人教版高中数学教案:第2章:函数,教案,课时第 (30)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“高中数学正弦函数教案”。
第三十一教时
教材:单元复习之二——续单元复习之一
目的:通处理一些未了的例题(《教学与测试》备用题),加深学生对概念的理解 过程:
1.某产品的总成本 y万元与产量 x台之间的函数关系式是 y300020x0.1x2 x(0,240),若每台产品的售价为25万元,则生产者不亏本的最低产量为多少?
解:25x300020x0.1x2即:x250x300
00∴x≥150(x≤120舍去)即:最低产量为150台2.已知函数 f(x)ax2
a2
x2ba
31 当x(2,6)时,其值为正;x(,2)(6,)时,其值为负,求a, b的值及f(x)的表达式2 设F(x)k
f(x)4(k1)x2(6k1),k为何值时,函数F(x)的值恒为负值
解:1 由已知 f(2)4a2a22ba300
解得:32a8a2
0(a
∴a = 4从而 b = 8∴f(x)4x216x48
2 F(x)k4
(4x216x48)4(k1)x2(6k1)kx24x2欲 F(x)0则
k0168k0得k
3.已知 a > 0,且a
3x
a
3x
52,求 a x的值。
解:设taxax则a3xa3x(axax)(a2xaxaxa2x)t(t23)52∴t33t520(t4)(t24t13)0∵t24t13(t2)290∴t = 4即 ax
a
x
4∴(ax)2
4ax
10∴ax
22
4.已知 a > 0,a 1,x12
(an
an)2 , 求(xx21)n的值。
112211
解:x2
11(anan)211(anan
2)11(anan)244
4111(a1)(xx2
1)n
[1n11n
a2(aan)2(anan)]1
a
(0a1)
5.已知nN*,f(n)n0.9n 比较 f(n)与 f(n+1)大小,并求 f(n)的最大值。解:f(n1)f(n)(n1)0.9n1n0.9n0.9n(0.9n0.9n)
9n
0.9n10
当1n9时,f(n1)f(n)
∵0.9n0∴当n9时,f(n1)f(n)即f(10)f(9)
当n9时,f(n1)f(n)综上:f(0)f(11)> f(12)>„„∴ 当 n = 9 或 n = 10时,f(n)最大,最大值为 f(9)= 9×0.9 9
6.已知 9x4y1,求 3x122y1的最大值。
解:∵
3x122y113x1(19x)1(3x1253223)9∴当3x1 即 x = 1时,3x122y153有最大值 9
7.画出函数 y|(12)|x|12|的图象,并利用图象回答:k为何值时,方程 |(1)|x|1
22|k无解?有一解?有两解? 解:当 k1
时,无解。1
2当 k
时,方程有唯一解(x = 0)。当 k = 0时,方程有两解(x =±1)。
当 0k
时,方程有四个不同解。作业:《课课练》P76—77“例题推荐”
1、2练习:4、5、6、7、8
第二十八教时教材: 函数的应用举例二目的: 要求学生熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法。 过程:一、新授:例一、(《教学与测试》 P69 第34课)某工厂今年1月......
第八教时教材:函数的值域目的:要求学生掌握利用二次函数、观察法、换元法、判别式法求函数的值域。过程:一、复习函数的近代定义、定义域的概念及其求法。提出课题:函数的值域二......
第二十九教时教材: 函数的应用举例三目的: 结合物理等学科,利用构建数学模型,解决问题。 过程:例一、(课本 P91例三)设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ycekx......
第二十四教时教材: 对数函数的定义、图象、性质目的:要求学生了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。 过程:一、复习: 指数函数的定......
第二十二教时教材: 换底公式目的:要求学生掌握对数的换底公式,并能解决有关的化简、求值、证明问题。 过程:一、复习:对数的运算法则导入新课:对数的运算的前提条件是“同底”,如果......