人教版高中数学教案:第5章:平面向量,教案,课时第 (15)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“高中数学平面向量教案”。
第十五教时
教材:平面向量的数量积平移的综合练习课
目的:使学生对平面向量数量积的意义、运算有更深的理解,并能较熟练地处理
有关长度、角度、垂直的问题。
过程:
一、复习:
1.平面向量数量积的定义、运算、运算律
2.平面向量数量积的坐标表示,有关长度、角度、垂直的处理方法 3.平移的有关概念、公式
二、例题
例
一、a、b均为非零向量,则 |a+b| = |ab| 是 的………………(C)A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解:若|a+b| = |ab| |a+b|2 = |ab|2 |a|2 + 2ab + |b|2 = |a|2 2ab + |b|2 ab = 0 ab
例
二、向量a与b夹角为
3,|a| = 2,|b| = 1,求|a+b||ab|的值。
解:|a+b|2 = |a|2 + 2ab + |b|2 = 4 + 2×2×1×cos
+ 1 = 7
∴|a+b| =7,同理:|ab|2 = 3, |ab| =3∴|a+b||ab| =21 中,= a,= b,= c,= d,且ab = bc = cd = da,问ABCD是怎样的四边形?解:由题设:|a||b|cosB = |b||c|cosC = |c||d|cosD = |d||a|cosA∵|a| = |c| , |b| = |d|∴cosA = cosB = cosC = cosD = 0是矩形 例
四、如图△ABC中,= c,BC= a,CA= b,则下列推导不正确的是……………(D)A.若a b
C.若a b = bc,则△ABC为等腰三角形。A D.若c(a + b + c)= 0,则△ABC为正三角形。
a
解:A.ab = |a||b|cos
C.由题设:|a|cosC = |c|cosA,即a、c在b上的投影相等
D.∵a + b + c = 0, ∴上式必为0,∴不能说明△ABC为正三角形
例
五、已知:|a| =2,|b| = 3,a与b夹角为45,求使a+b与a+b夹
角为锐角的的取值范围。
解:由题设:ab = |a||b|cos = 3×2×
2= 3(a+b)(a+b)=|a|2 +|b|2 +(
2+ 1)ab = 32 + 11 + 3∵夹角为锐角∴必得32 + 11 + 3 > 0∴
11116或6
例
六、i、j是平面直角坐标系内x轴、y轴正方向上的两个单位向量,且AB= 4i + 2j,AC=3i + 4j,证明:△ABC是直角三角形,并求它的面积。
解:=(4, 2), =(3, 4), 则=(34, 42)=(1, 2), =(4, 2),∴BABC=(1)×(4)+(2)×2 = 0∴BABC即△ABC是直角三角形
|| =42222,|| =(1)2(2)2,且B = 90,∴S1△ABC = D 2
2555 例
七、用向量方法证明:菱形对角线互相垂直。证:设AB=DC= a , AD=BC= b A
C
∵ABCD为菱形∴|a| = |b|
a
∴ACBD=(b + a)(b a)= b2
a2
= |b|2
|a|2
b= 0
B
∴AC
例
八、已知a、b都是非零向量,且a + 3b与7a 5b垂直,a 4b与7a 2b垂直,求a与b的夹角。
解:由(a + 3b)(7a 5b)= 0 7a2 + 16ab 15b2 = 0①(a 4b)(7a 2b)= 0 7a2 30ab + 8b2 = 0②两式相减:2ab = b2代入①或②得:a2 = b2
设a、b的夹角为,则cos =abb21
|a||b|2|b|2
∴ = 60
三、作业: P150复习参考五A组19—26B组1—6
第九教时教材:向量平行的坐标表示目的:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。过程:一、复习:1.向量的坐标表示(强调......
人教版高中数学教案:第5章:平面向量,教案,课时第 (13)
第十三教时教材:平面向量的数量积的坐标表示目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。过程:一、复习:1.平面向量的坐标表示及加、减、实数......
人教版高中数学教案:第5章:平面向量,教案,课时第 (21)
第二十二教时教材:复习一——向量、向量的加法与减法、实数与向量的积目的:通过复习对上述内容作一次梳理,使学生对知识的理解与应用提高到一个新的水平。过程:一、知识(概念)的梳......
人教版高中数学教案:第5章:平面向量,教案,课时第 (18)
第十八教时教材:余弦定理目的:要求学生掌握余弦定理及其证明,并能应用余弦定理解斜三角形。 过程:一、复习正弦定理及正弦定理能够解决的两类问题。提出问题:1.已知两边和它们的夹......
人教版高中数学教案:第5章:平面向量,教案,课时第 (24)
第二十五教时教材:复习四——平面向量的数量积及运算律目的:要求学生对平面向量的数量积的概念理解更清晰,并能教熟练地应用于平行、垂直等问题。过程:一、复习:1.定义、其结果是......