人教版高中数学教案:第5章:平面向量,教案,课时第 (18)_高中数学平面向量教案

教案模板 时间:2020-02-27 13:17:21 收藏本文下载本文
【www.daodoc.com - 教案模板】

人教版高中数学教案:第5章:平面向量,教案,课时第 (18)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“高中数学平面向量教案”。

第十八教时

教材:余弦定理

目的:要求学生掌握余弦定理及其证明,并能应用余弦定理解斜三角形。过程:

一、复习正弦定理及正弦定理能够解决的两类问题。提出问题:1.已知两边和它们的夹角能否解三角形?

2.在Rt△ABC中(若C=90)有:c2a2b2在斜三角形中一边的平

方与其余两边平方和及其夹角还有什么关系呢?

二、提出课题:余弦定理1.余弦定理的向量证明:设△ABC三边长分别为a, b, c b

AC=AB+BC

A

B

•=(+)•(+)=2+2•+

2=| |2+2||•||cos(180-B)+||2=c22accosBa2

即:b2a2c22accosB

同理可得:a2b2c22bccosAc2a2b22abcosC

2.语言叙述:三角形任何一边的平方等于其它两边平方的和减去这两边与它

们夹角的余弦的积的两倍。

3.强调几个问题:1熟悉定理的结构,注意“平方”“夹角”“余弦”等2知三求一

3当夹角为90时,即三角形为直角三角形时即为勾股定理(特例)

4变形:cosAb2c2a2a2c2b2a2b2c2

2bccosB2accosC2ac

三、余弦定理的应用

能解决的问题:1.已知三边求角

2.已知三边和它们的夹角求第三边

一、(P130例4)在△ABC中,已知a=7, b=10, c=6求A,B,C(精确到期1)解略

二、(P131例5)在△ABC中,已知a=2.730, b=3.696, C=8228’解这个三角

形(边长保留四个有效数字,角度精确到期1’)解略

三、设a=(x=(x1, y1)b2, y2)a

与b的夹角为(0≤≤),求证:

x+ ya||b

121y2=||cos

证:如图:设a, b

起点在原点,终点为A,B

A

则A=(x=ba

1, y1)B=(x2, y2)在△ABC中,由余弦定理 B

a

|ba|2=|a|2+|b|22|a||b

| cos

b

O

∵|ba|2

=|AB|2=|(x2-x1, y2-y1)|2=(x2-x1)2+(y2-y1)2 |a|2=xb12+y12

||2= x22+y22 ∴(x2-x1)2

+(y2-y1)

= x2+ x

12+y122+y222|a

||b

| cos

∴xy

1x2+ y12=|a||b|cos即有a•b= x1x2+ y1y2=|a||b|cos

四、小结:余弦定理及其应用

五、作业:P131练习P132 习题5.9余下部分

x

人教版高中数学教案:第5章:平面向量,教案,课时第 (15)

第十五教时教材:平面向量的数量积平移的综合练习课目的:使学生对平面向量数量积的意义、运算有更深的理解,并能较熟练地处理有关长度、角度、垂直的问题。过程:一、复习:1.平面向......

人教版高中数学教案:第5章:平面向量,教案,课时第 (9)

第九教时教材:向量平行的坐标表示目的:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。过程:一、复习:1.向量的坐标表示(强调......

人教版高中数学教案:第5章:平面向量,教案,课时第 (13)

第十三教时教材:平面向量的数量积的坐标表示目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。过程:一、复习:1.平面向量的坐标表示及加、减、实数......

人教版高中数学教案:第5章:平面向量,教案,课时第 (21)

第二十二教时教材:复习一——向量、向量的加法与减法、实数与向量的积目的:通过复习对上述内容作一次梳理,使学生对知识的理解与应用提高到一个新的水平。过程:一、知识(概念)的梳......

人教版高中数学教案:第5章:平面向量,教案,课时第 (24)

第二十五教时教材:复习四——平面向量的数量积及运算律目的:要求学生对平面向量的数量积的概念理解更清晰,并能教熟练地应用于平行、垂直等问题。过程:一、复习:1.定义、其结果是......

下载人教版高中数学教案:第5章:平面向量,教案,课时第 (18)word格式文档
下载人教版高中数学教案:第5章:平面向量,教案,课时第 (18).doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文