数据挖掘岗位职责(精选6篇)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数据挖掘能做什么”。
第1篇:数据挖掘工程师工作的岗位职责
数据挖掘工程师工作的岗位职责模板
数据挖掘工程师需要通过海量数据对用户广告的行为进行深入分析与洞察,提炼和发现业务规律,指导推荐模型特征构建,定位产品相关的数据问题及分析优化。下面是的数据挖掘工程师工作的岗位职责模板。
数据挖掘工程师工作的岗位职责模板1
职责:
1、负责公司与阿里巴巴在新行业方向(新金融、新零售、国内外运营商)的产品研发;
2、负责分析挖掘客户/行业对大数据产品的需求(应用场景),利用数据分析结论提升客户业务能力。例如:文本挖掘,潜在客户挖掘,用户画像,个性化推荐,用能预测等;
3、进行大数据场景下的数据统计、数据挖掘、机器学习、深度学习,包括数据整理、模型建立、模型应用、评估优化等;
4、将客户需求准确转化为可执行的数学模型,针对不同的应用场景,负责编写数据挖掘算法及对其的优化;
5、基于需求分析/运营支持/商业报告等成果,抽取典型用户/客户/行业/产品分析模型并与开发团队沟通实施方案及构建产品原型。
岗位要求:
1、本科以上学历,扎实的机器学习、数据挖掘、统计学理论基础;有统计、应用数学、金融等相关专业背景优先;
2、精通常见机器学习算法(如逻辑回归、SVM、神经网络、决策树、贝叶斯等),有实际建模经验,掌握深度学习算法优先;
3、具有扎实的计算机操作系统、数据结构等编程基础,精通至少一门编程语言例如JAVA/python/R等;
4、熟悉Map-Reduce模型,对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验优先。
数据挖掘工程师工作的岗位职责模板2
职责:
1、对海量业务数据进行分析,并利用算法挖掘用户行为特征,发现潜在规律,建立机器学习算法并优化;
2、利用数据挖掘技术分析、预测用户的消费行为;
3、建立各种业务逻辑模型和数学模型,帮助公司改善运营管理,节省成本。
任职要求:
1、大学本科及以上学历;
2、统计学、会计学、数学、物理等相关专业;
3、本科5年以上同岗位工作经验,研究生3年以上同岗位工作经验;
4、对统计学和数据挖掘算法原理有较为深刻的理解,了解数据仓库思想,熟悉SPSS、SAS、R、MAHOUT等数据挖掘软件之一;
5、熟悉决策树、聚类、逻辑回归,关联分析、SVM,贝叶斯等数据挖掘算法,有海量数据挖掘的项目经验;
6、有用户行为分析、用户建模、业务建模、数学建模经验优先;
7、良好的逻辑分析能力、分析问题和解决问题的能力,对数据敏感,良好的沟通能力。
数据挖掘工程师工作的岗位职责模板3
职责:
1.负责海量数据的分析开发工作;
2.完成数据挖掘模型,跟踪模型的实施和效果,定期优化算法和分析策略,分析研究后提供建设性建议;
3.优化大数据存储、计算等各方面性能,确保能从海量大数据信息里,有效进行数据分析和挖掘;
4.根据用户的活动记录进行特征筛选和关联挖掘。提高关联准确性;
5.参与相关数据标准和规范的制定。
要求:
1.熟悉java/scala/python/R中至少一种编程语言,具有良好的编码习惯;
2.计算机、数学相关专业本科以上学历;
3.2年以上数据挖掘及其相关经验,对常用的数据挖掘算法有较深入了解,有实际算法调优经验;
4.熟悉常用数据挖掘算法(聚类/分类/回归/关联规则/图模型)等算法原理,具备实际的建模经验,熟悉常用机器学习算法原理,如朴素贝叶斯/决策树/随机森林/逻辑回归/SVM等,并具备相关应用经验;
5.熟悉hadoop生态,具有spark/flink等实际开发经验;
6.极强的数据敏感度,能从海量数据中挖掘出数据核心价值,相关;
7.熟悉分布式存储,熟悉mysql/oracle、hbase、redis、mogongdb、elasticsearch等,熟悉neo4j/JanusGraph等图数据库优先;
8.富有创新精神,充满激情,乐于接受挑战,良好的沟通技巧和团队合作,抗压性强,能适应加班。
数据挖掘工程师工作的岗位职责模板4
职责:
1.依据项目需求建构数据萃取与转换流程
2.挖掘数据特征,进行数据和特征融合3.搭建数学模型,并对模型进行检验评估
职位要求:
1、计算机、数学、统计、人工智能等相关专业的硕士或以上学历;
2、二年以上数据挖掘、机器学习相关工作经验,熟悉python、spark、pandas、sklearn等数据分析工具者优先;
3、熟练掌握贝叶斯、随机森林、深度学习等机器学习算法;
4、突出的分析问题和解决问题能力,自我驱动,并且具备较强的学习能力、创新应用能力及沟通协调能力,有良好的团队合作意识;
5、有国际背景或能熟练使用英文沟通者优先
数据挖掘工程师工作的岗位职责模板5
职责:
(1)分析需求,完成相关数据抽取、数据清洗、数据探索、数据建模分析等工作;
(2)按要求完成数据分析报告、建模报告、数据报表等;
(3)对数据进行深度挖掘和建模,做运营和用户等各方面分析,深度挖掘运营优化和用户行为特征等,推动分析问题的解决,为业务决策提供日常支持;
(4)与业务部门和技术部门对接,完成设计,编写,维护和完善公司业务相关的算法。
(5)参与项目成果汇编,对相关结果进行解读和汇报。
任职要求:
(1)大专以上学历,统计、数学、计算机、软件专业优先;
(2)熟练使用Python,Mysql语言,具有一定的工程能力,完善的文档和注释习惯。熟悉JupyterLab远程代码编写环境,Linux常用命令。会使用R,Java,Scala等语言更佳。
(3)熟悉数据分析过程,能够完成数据抽取、数据处理、数据建模、数据分析报告等任务;
(4)一定的数据挖掘/机器学习理论和技术基础,了解常用的数据挖掘算法如:聚类模型、线性回归、逻辑回归、分类模型、决策树模型等。
数据挖掘工程师工作的岗位职责模板
第2篇:数据挖掘
第4章 无监督学习
4.1基本概念
图4.1数据点的三个自然
4.2k-均值聚类
4.2.1k-均值算法
图4.2k-均值算法
计算机组成原理(第三版)
图4.3k-均值算法的运行实例
4.2.2k-均值算法的硬盘版本
图4.4一个简单的k-均值算法硬盘版本
计算机组成原理(第三版)4.2.3优势和劣势
图4.5存在和不存在异常值情况下的聚类
图4.6不理想的初始种子(聚类中心)
图4.7理想的初始种子(聚类中心)4
计算机组成原理(第三版)
图4.8自然(不规则)聚类和k-均值聚类
4.3聚类的表示
4.3.1聚类的一般表示方法
图4.9聚类的规则描述
4.3.2任意形状的聚类
图4.10两个自然聚类以及
计算机组成原理(第三版)4.4层次聚类
图4.11层次聚类的一个例子
图4.12合并层次聚类算法
图4.13合并层次聚类算法的工作
4.4.1单链接方法
图4.14单链接方法的连锁反应
计算机组成原理(第三版)4.4.2全链接方法
图4.15采用全链接方法聚类
4.4.3平均链接方法 4.4.4优势和劣势
4.5距离函数
4.5.1数值的属性(Numeric Attributes)4.5.2布尔属性和符号属性(Binary and Nominal Attributes)
图4.16两个只具有布尔属性数据点的混合矩阵
计算机组成原理(第三版)4.5.3文本文档
4.6数据标准化 4.7混合属性的处理 4.8采用哪种聚类算法 4.9聚类的评估
图4.17带有熵和纯度值的混合矩阵
计算机组成原理(第三版)4.10发现数据区域和数据空洞
图4.18用决策树来区分数据区域和空洞区域
第3篇:数据挖掘总结
数据挖掘总结(职业篇)
数据分析微信公众号datadw——关注你想了解的,分享你需要的。前面对数据挖掘相关资源等等进行了总结。但是,很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想想这方面发展的朋友共享:
BI职业发展方向:数据分析师---商业分析师--管理者
但是在每个公司,可能有不同的发展方向,但是大致上是从数据挖掘工程师起步。DMFighter:
数据挖掘从业人员工作分析 1.数据挖掘从业人员的愿景:
数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。
A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等)B:做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等)C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)2.数据挖掘从业人员切入点: 根据上面的从业方向倒序并延伸来说说需要掌握的技能。
C,数据分析师:需要有深厚的数理统计基础,可以不知道人工智能和计算机编程等相关技术,但是需要熟练使用主流的数据挖掘(或统计分析)工具。从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《中文版 数据挖掘原理》 等书籍那就更好了。
B,程序设计开发:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。要想扮演好这个角色,你不但需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和操作,对数据挖掘基础课程有所了解,读过《数据挖掘概念与技术》(韩家炜著)、《人工智能及其应用》。有一点了解以后,如果对程序比较熟悉的话并且时间允许,可以寻找一些开源的数据挖掘软件研究分析,也可以参考如《数据挖掘:实用机器学习技术及Java实现》等一些教程。
A.做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,也是B,C的归宿,那么相应的也就需要对B、C的必备基础知识了。
-----------数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。
一、专业技能
硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验
熟练掌握常用的数据挖掘算法
具备数理统计理论基础,并熟悉常用的统计工具软件
二、行业知识
具有相关的行业知识,或者能够很快熟悉相关的行业知识
三、合作精神
具有良好的团队合作精神,能够主动和项目中其他成员紧密合作
四、客户关系能力
具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望
具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力
进阶能力要求
数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。
具有数据仓库项目实施经验,熟悉数据仓库技术及方法论
熟练掌握SQL语言,包括复杂查询、性能调优
熟练掌握ETL开发工具和技术
熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术
善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性操作方案
五、应用及就业领域
当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation &Claification)、背景分析(Profile Analysis)、交叉销售(Cro-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问著名的亚马逊网上书店(www.daodoc.com),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book alsobought”,这背后就是数据挖掘技术在发挥作用。
数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Busine First, techniquesecond”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。
数据采集分析专员
职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。
求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。
市场/数据分析师
1.市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing(直接面向客户的市场营销)吧,自90年代以来,Direct Marketing越来越成为公司推销其产品的主要手段。根据加拿大市场营销组织(Canadian MarketingAociation)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有更多的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。
2.行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。
现状与前景
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较著名的有中科院计算所、复旦大学、清华大学等。另外,政府机构和大型企业也开始重视这个领域。
据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。
根据IDC(International DataCorporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。
现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。
众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地!
职业薪酬
就目前来看,和大多IT业的职位一样,数据仓库和数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺,在二线成熟,高端数据仓库和数据挖掘方面的人才尤其稀少。高端数据仓库和数据挖掘人才需要熟悉多个行业,至少有3年以上大型DWH和BI经验,英语读写流利,具有项目推动能力,这样的人才年薪能达到20万以上。
第4篇:数据挖掘试题
《数据挖掘》总复习题
1.数据挖掘系统可以根据什么标准进行分类?
答:根据挖掘的数据库类型分类、根据挖掘的知识类型分类、根据挖掘所用的技术分类、根据应用分类
2.知识发现过程包括哪些步骤?
答:数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估、知识表示3.什么是概念分层?
答:一个映射序列,将低层概念映射到更一般的较高层概念。4.多维数据模型上的 OLAP 操作包括哪些?
答:上卷、下钻、切片和切块、转轴 / 旋转、其他OLAP操作5.OLAP 服务器类型有哪几种?
答:关系 OLAP 服务器(ROLAP)、多维 OLAP 服务器(MOLAP)、混合 OLAP 服务器(HOLAP)、特殊的 SQL 服务器6.数据预处理技术包括哪些?
答:聚集、抽样、维规约、特征子集选择、特征创建、离散化和二元化、变量变换。7. 什么是数据清理?
答:填写缺失的值,平滑噪声数据,识别、删除离群点,解决不一致性 8. 什么是数据集成?
答:集成多个数据库、数据立方体或文件 9.什么是数据归约?
答:得到数据集的压缩表示,它小得多,但可以得到相同或相近的结果 10.数据清理的内容包括哪些?
答:缺失值、噪声数据、数据平滑、聚类、回归11.将下列缩略语复原
OLAP——on-line analytical proceing DM——data mining
KDD——knowledge discovery in databases OLTP——on-line transaction proceingDBMS——database management system DWT——discrete wavelet transform
(DMQL)--Data Mining Query Language 12.什么是数据挖掘?
答:简单地说,数据挖掘是从大量数据中提取或挖掘知识。具体地说,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际 应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和 知识的过程。13.什么是关联规则? 答:(关联规则是形如X→Y的蕴涵式,其中且,X和Y分别称为关联规则的先导和后继。)假设I是项的集合。给定一个交易数据库,其中每个事务(Transaction)t是I的非空子集,即,每一个交易都与一个唯一的标识符TID(Transaction ID)对应。关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率;置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。关联规则是有趣的,如果满足最小支持度阈值和最小置信度阈值。这些阈值是根据挖掘需要人为设定。
(关联规则反映一个事物与其它事物之间的相互依存性和关联性,如果两个事物或者多个事物之间存在一定的关联关系,那么其中一个事物就能够通过其他事物预测到。)15.什么是概念描述?什么是特征化?什么是属性相关分析?
答:概念描述:用汇总的、简洁的和精确的方式描述各个类和概念可能是有用的。特征化:是目标类数据的一般特性或特征的汇总。
属性相关分析:可能需要在分类和预测之前进行,它试图识别对于分类或预测过程无用的属性。这些属性应当排除。
16.什么是数据仓库?其主要特征是什么?
答:数据仓库是一个提供决策支持功能的数据库,它与组织机构的操作数据库分别维护。它允许将各种应用系统集成在一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。
特征:面向主题、数据集成、随时间而变化、数据不易丢失(数据不易丢失是最明显特征)17.什么是数据集市?
答:数据集市包含企业范围数据的一个子集,对于特定的用户群是有用的。其范围限于选定的主题。
(是完整的数据仓库的一个逻辑子集,而数据仓库正是由所有的数据集市有机组合而成的)18.数据库中的知识发现过程由哪几个步骤组成?
答:数据清理、数据仓库、任务相关数据、数据挖掘、模式评估、知识表示 19.典型的数据挖掘系统有哪几个主要成分?
答:数据库、数据仓库、万维网或其他信息库;数据库或数据仓库服务器;知识库;数据挖掘引擎;模式评估模块;用户界面
20.从软件工程的观点来看,数据仓库的设计和构造包含哪些步骤?
答:规划、需求研究、问题分析、仓库设计、数据集成和测试、部署数据仓库。21.在数据挖掘系统中,为什么数据清理十分重要?
答: 脏数据的普遍存在,使得在大型数据库中维护数据的正确性和一致性成为一个极其困难的任务。
22.脏数据形成的原因有哪些?
答:滥用缩写词、数据输入错误、数据中的内嵌控制信息、不同的的惯用语、重复记录、丢失值、拼写变化、不同的计量单位、过时的编码23.数据清理时,对空缺值有哪些处理方法?
答:忽略元组、人工填写缺失值、使用一个全局变量填充缺失值、使用属性的平均值填充缺失值、使用与给定元组属同一类的所有样本的属性均值、使用最可能的值填充缺失值 24.什么是数据变换?包括哪些内容?
答:将数据转换或统一成适合于挖掘的形式。包括:光滑、聚集、数据泛化、规范化、属性构造 25. 数据归约的策略包括哪些?
答:数据立方体聚集、性子集选择、维度归约、数值归约、离散化和概念分层产生 26.提高数据挖掘算法效率有哪几种思路?
答:减少对数据的扫描次数;缩小产生的候选项集;改进对候选项集的支持度计算方法 27.假定属性income的最小值与最大值分别为12000和980到区间[0.0,1.0],根据 min-max 规范化,income的值73600将变为_3631/551_。
28.假定属性income的平均值和标准差分别为54000和16000,使用 Z-score 规范化,值73600被转换为_1.225_。
29.假定A的值由-986到917.A的最大绝对值为986,使用小数定标规范化,-986被规范化为_-0.986_
30.从结构角度来看,有哪三种数据仓库模型。答:企业仓库、数据集市、虚拟仓库
31.什么是聚类分析?它与分类有什么区别?
答:将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程 区别:分类有监督 聚类无监督 分类要靠学习 聚类要靠启发式搜索 32.与数据挖掘类似的术语有哪些?
答:数据库中挖掘知识、知识提取、数据/模式分析、数据考古和数据捕捞。33.解释下列术语 34.翻译下列术语
Data Mining 数据挖掘Data warehousing 数据仓库Data Mart 数据集市
drill-down 下钻roll-up上卷OLAP 联机分析处理Data cube 数据立方体 Aociation rule 关联规则Data cleaning数据清理Data integration 数据集成 Data transformation数据变换Data reduction 数据归约
35.可以对按季度汇总的销售数据进行___B___,来观察按月汇总的数据。A 上卷 B 下钻 C 切片 D 切块
36.可以对按城市汇总的销售数据进行____A__,来观察按国家总的数据。A 上卷 B 下钻 C 切片 D 切块
37.通过不太详细的数据得到更详细的数据,称为____B____。A 上卷 B 下钻 C 细化 D 维规约
38.三层数据仓库结构中,从底层到尾层分别是_仓库数据服务器、OLAP服务器、前端客户层__。
42.常用的四种兴趣度的客观度量。
答:简单性 确定性 实用性 新颖性43.四种常用的概念分层类型。
答:模式分层、集合分组分层、操作导出的分层、基于规则的分层45.如何理解现实世界的数据是“肮脏的”?答:不完整的、含噪声的、不一致的、重复的 46.多维数据仓库有哪几种概念模型?
答:星形模式、雪花形模式或事实星座形模式。
48.在多路数组聚集算法中,如何尽量少地占用内存?
答:将最小的平面放在内存中,将最大的平面每次只是提取并计算一块。49.给出方体的维数,会计算各D方体有多少,总的方体个数有多少?2^n50.什么是离群点?离群点都需要删除吗?为什么?
答:离群点:一些与数据的一般行为或模型不一致的孤立数据。不需要。通常离群点被作为“噪音”或异常被丢弃,但在欺诈检测中却可以通过对罕见事件进行离群点分析而得到结论。
【51.所有模式都是有趣的吗?
答:一个模式是有趣的,如果(1)它易于被人理解 ;(2)在某种程度上,对于新的或测试数据是有效的;(3)具有潜在效用;(4)新颖的;(5)符合用户确信的某种假设。】
第5篇:数据挖掘作
第二章
2.1使用STATISTIC分析软件中的关联规则对数据集bnkserv.sta中的各类银行服务进行关联分析。使用Statistics菜单下的Data-Mining命令,选择Sequence下的Aociation and Link Analysis模块。通过一系列的变量等的设置,最终得到的频繁项集如表2.11所示: 表2.11
Summary of sequential rules(bnkserv)Min: support = 20.0%, confidence = 10.0%Max.size of an itemset = 10Body==>HeadSupport(%)Confidence(%)1(CKING)==>(SVG)54.1734563.150982(CKING)==>(SVG),(ATM)24.8529628.971553(CKING),(SVG)==>(ATM)24.8529645.876654(CKING)==>(ATM)36.1907142.188185(CKING)==>(CD)20.9861124.463896(SVG)==>(ATM)25.6914041.52508
从表2.11中我们可以看出,这13种银行服务经STATISTIC软件中的关联规则分析总共生成6个频繁项集,其中序列规则If(CKING)Then(SVG)的支持度和置信度是最大的,分别为54.17%、63.15%。每一频繁项集的支持度和置信度一一对应,下面的图2.1-1和图2.1-2比较直观的将各频繁项集的最小支持度和最小置信度表现出来了。
单击“ASCResult”窗口中的“Support graph”就可得到如图2.11所示的结果。
Support bar chartMin: support = 20.0%, confidence = 10.0%Max.size of an itemset = 10图2.11
从该图中我们可以直观、清晰地看出各个规则支持度的大小。例如,同其他规则相比较,If(CKING)Then(CD)的支持度是最小的。
单击“ASCResult”窗口中的“Confidence graph”就可得到如图2.12所示的结果。
Confidence bar chartMin: support = 20.0%, confidence = 10.0%Max.size of an itemset = 10
图2.12 从这个图中我们可以直观、清晰地看出各个规则置信度的大小。例如,同其他规则相比较,If(CKING)Then(CD)的置信度是最小的。
通过对以上各银行服务组合的支持度和置信度的分析,我们发现不同的银行服务组合在总的业务组合中所占的比例不同,据此我们可以推测不同的银行服务组合所面向的客户群不同。
单击“Rule graph”按钮得到图2.13,该图直观清晰的显示出各银行服务组合间的关联性。
Rule graphNode size: Relative support of each itemColor darkne: Relative confidence0.2450.632CDATMBodySVGCKINGCKINGSVGHeadATMCD图2.13 我们以圆点的大小和颜色代表支持度和置信度的大小。从图中我们可以得到与前面相同的结论: CKING和SVG之间的序列关联是最强的;CKING和CD之间的序列关联最弱。
2.2使用STATISTIC分析软件中的关联规则对数据集gz3g.sta中的各3G业务进行关联分析。使用Statistics菜单下的Data-Mining命令,选择Sequence下的Aociation and Link Analysis模块。通过一系列的变量等的设置,最终得到的频繁项集如表2.21所示
第6篇:数据岗位职责
数据员的工作职责 1、要热爱本职工作,具有高度的责任心和忘我的工作精神,爱岗敬业,工作认真细致,能认真完成公司交给的各项工作任务; 2、自觉贯彻党的方针、政策,认真学习法律知识和统计业务知识,搜集和整理各类统计资料;
3、坚持实事求是的职业道德,认真执行统计法律法规,坚决反对和制止在统计上弄虚作假的违法行为,做到准确无误; 4、及时、准确的提供、反馈各项目的数据分析情况; 5、要求掌握较深的业务知识和计算机应用知识,能应用多种应用软件进行各种数据分析和综合数据处理,加工成有用的信息提供领导进行决策,提高统计工作的整体业务水平和工作水平;
6、能配合电脑系统维修保养管理人员进行计算机网络维护及管理; 7.、负责本公司计算机信息网络数据的收集、传递(主要是上报)和管理工作; 8、对各项目上报的数据和本部门之间传递的信息数据,要做好详细的“数据传递纪录”,对未按时间要求漏报和数据有误的部门要及时督促,每月将各项目站点数据上报情况通报一次;
9、负责各类数据的整理、汇总和分析处理工作,及时向本公司领导及有关部门上报信息数据,做好相关纪录; 10、负责所有患者信息数据的安全管理,及时做好各类数据及报表的备份工作,做好归档、保管工作,做好信息数据的保密工作,严禁向部门及他人提供各类信息数据,要将所有资料分类归档,妥善管理;
11、负责各项目的存档资料,做好患者原始记录的归档和保管工作; 12、遵守特定的工作时间:当日事当日毕。2012年2月(第一版)篇2:数据管理部工作职责
数据管理部工作职责
一、数据管理部主任 工作概要:数据管理部主任是专门负责全院数据管理,并使之符合医院内部医疗、行政、教学、研究工作的要求。
请示上报:业务副院长
工作职责:
1、规划医院信息系统,使之达到医院的目标和标准。2、制定业务发展规划和年度工作计划,并组织实施。3、在已批准的预算控制下管理本部门。4、做好员工业务考核,配合提出调整、晋升及奖励意见。5、安排员工的发展方向和业务进修,从事本专业的研究和开发。6、评估数据管理部各项工作,建立有关的标准及技术,必要时做出适当的修正。7、安排与指导医院信息系统内部数据提供和外部数据接口对接。
二、信息工程办主任职责
工作概要:信息工程办主任是协助数据管理部主任进行信息管理,上线和培训医院信息系统,并使之符合医院内部医疗、行政、教学、研究工作的要求。
请示上报:数据管理部主任
工作职责:
1、协助主任完成医院信息系统规划、上线与培训,使之达到医院的目标和标准。2、协助主任完成对机房服务器、交换机、虚拟机日常管理。3、协助主任指导员工完成对全院网络、信息化基础设施的管理。4、当分管某部分工作时,负责检查任务的执行情况,并组织协调。
三、数据软件办主任职责
工作概要:数据软件办主任是协助数据管理部主任进行数据管理、日常管理工作,并使之符合医院内部医疗、行政、教学、研究工作的要求。请示上报:数据管理部主任
工作职责:
1、协助主任完成医院数据管理与维护,使之达到医院的目标和标准。2、协助主任完成医院日常信息化需求变更与及时受理。3、协助主任指导员工完成医院日常维护。4、当分管某部分工作时,负责检查任务的执行情况,并组织协调。
四、病案图书管理办主任职责 工作概要:病案图书管理办主任是协助数据管理部主任进行病案管理,图书馆管理,并使之为医院医疗、行政、教学、研究服务。
请示上报:数据管理部主任
工作职责:
1、协助主任完成科室病案管理和统计数据的对内和对外上报。2、协助主任完成对图书馆的日常管理。3、协助主任指导病案统计员工按时完成日常病案资料的整理和病案数据的归档及保存,并使之达到医院管理的要求。4、经医院授权,为医院各部门提供数据分析和统计数据。
刀豆文库小编为你整合推荐7篇数据挖掘工程师岗位职责,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
数据挖掘工程师岗位职责随着社会一步步向前发展,岗位职责的使用频率逐渐增多,岗位职责包括岗位职务范围、实现岗位目标的责任、岗位环境、岗位任职资格及各个岗位之间的相互关......
第4章 无监督学习4.1基本概念图4.1数据点的三个自然4.2k-均值聚类4.2.1k-均值算法图4.2k-均值算法计算机组成原理(第三版)图4.3k-均值算法的运行实例4.2.2k-均值算法的硬盘......
第1篇:数据挖掘工程师工作的岗位职责数据挖掘工程师工作的岗位职责模板数据挖掘工程师需要通过海量数据对用户广告的行为进行深入分析与洞察,提炼和发现业务规律,指导推荐模型......
《数据挖掘》总复习题1.数据挖掘系统可以根据什么标准进行分类?答:根据挖掘的数据库类型分类、根据挖掘的知识类型分类、根据挖掘所用的技术分类、根据应用分类2.知识发现过程包......