数据挖掘与数据仓库教学大纲由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数据仓库技术教学大纲”。
数据挖掘与数据仓库(教学大纲)
Data mining and data warehouse
课程编码:05405140 学分: 2.5 课程类别: 专业方向课 计划学时: 48 其中讲课:32 实验或实践: 上机:16 适用专业:信息管理与信息系统、电子商务 推荐教材:
陈文伟,数据仓库与数据挖掘教程,清华大学出版社,2008 参考书目:
1.Richard J.Roiger, Michael W.Geatz.Data Mining: A Tutorial-Based Primer.2003.2.Ian H.Witten, Eibe Frank.Data Mining: Practical Machine Learning Tools and Techniques(第二版).机械工业出版社(影印版),2005.3.Jiawei Han, Micheline Kamber.Data Mining: Concepts and Techniques.2001.5.4.数据仓库与数据挖掘技术(第2版),陈京民 编著,电子工业出版社,2007.11 5.数据仓库和数据挖掘,苏新宁 等编著,清华大学出版社,2006.4 6.数据挖掘Clementine应用实务,谢邦昌 主编,机械工业出版社,2008.4
课程的教学目的与任务
本课程将系统介绍数据挖掘的基本概念、基本原理和应用基础,通过课堂讲授、实例分析,提高学生数据挖掘技术的认识,熟悉基本工具应用,并掌握设计和开发数据挖掘算法和系统的初步能力。
课程的基本要求
1、了解数据仓库及数据挖掘的概念、特征、应用范围,以及主要数据挖掘工具
2、了解OLTP 和 OLAP的区别;熟悉OLAP 的体系结构,以及如何评价OLAP工具;掌握多维分析的基本分析动作。
3、了解数据质量,掌握数据预处理方法,4、掌握数据挖掘的定性归纳技术、关联挖掘、聚类分析、分类方法、预测方法、文本挖掘、WEB挖掘
5、熟练掌握数据挖掘软件Clementine在各类挖掘任务中的应用。各章节授课内容、教学方法及学时分配建议(含课内实验)
第一章.数据仓库与数据挖掘概述 建议学时:2 [教学目的与要求] 了解数据仓库及数据挖掘的概念、特征、应用范围,以及主要数据挖掘工具。[教学重点与难点] 数据仓库及数据挖掘的概念
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 1.1 为什么要数据挖掘 1.2 数据挖掘的应用示例 1.3 数据挖掘方法简介
1.4 数据挖掘与其他学科的关系 1.5 商务智能的三大块 1.6 常用数据挖掘工具简介
第二章 数据仓库技术
建议学时:4 [教学目的与要求] 了解数据仓库的概念,区分与传统数据库技术的不同;掌握数据仓库存储的抽取、转换和装载
[教学重点与难点] 数据仓库存储的抽取、转换和装载;数据仓库存储的数据模型 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 2.1 数据仓库的概念
2.2 数据仓库存储的数据模型 2.3 数据仓库的体系结构
2.4 数据仓库应用的抽取、转换和装载
第三章 数据仓库开发模型
建议学时:4 [教学目的与要求] 了解数据仓库开发模型的概念,了解数据仓库开发过程,掌握数据仓库三种概念模型:星型模式、雪花模式、或事实星座模式,掌握数据粒度概念,元数据概念。
[教学重点与难点] 数据仓库三种概念模型,数据粒度概念,元数据概念 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 3.1 数据仓库开发模型的概念
3.2 数据仓库的概念模型 3.3 数据仓库的逻辑模型 3.4 数据仓库的物理模型 3.5 数据仓库的生成3.6 数据仓库的使用和维护
3.7 数据仓库的粒度、聚集和分割 3.8 元数据
第四章 联机分析处理(OLAP)技术 建议学时:4 [教学目的与要求] 了解OLTP 和 OLAP的区别;熟悉OLAP 的体系结构,以及如何评价OLAP工具;掌握多维分析的基本分析动作。[教学重点与难点] OLAP 的体系结构;多维分析的基本分析动作 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 4.1 从OLTP 到 OLAP 4.2 OLAP 的基本概念
4.3 多维分析的基本分析动作 4.4 OLAP 的数据组织 4.5 OLAP 的体系结构 4.6 OLAP 工具及评价
4.7 Codd 关于 OLAP 产品的十二条评价准则
第五章 数据挖掘的原理与技术 建议学时:4 [教学目的与要求] 了解为什么要数据挖掘、数据挖掘与其他学科的关系,熟悉常用数据挖掘方法和工具,掌握数据挖掘的原理与技术。
[教学重点与难点] 数据挖掘的原理与技术,数据挖掘与其他学科的关系 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 5.1 知识发现的过程
5.2 数据挖掘的方法和技术 5.3 数据挖掘的知识表示
第六章 数据的获取和管理 建议学时:4 [教学目的与要求] 了解数据的数据获取和管理,掌握数据质量的多维度量,掌握数据预处理方法 [教学重点与难点] 数据质量,数据预处理方法
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 6.1 数据仓库的数据获取 6.2 数据管理 6.3 系统管理 6.4 数据的预处理
6.5 数据质量的多维度量 6.6 数据预处理的主要方法
第七章 定性归纳
建议学时:2 [教学目的与要求] 了解数据挖掘的定性归纳技术,掌握ID3算法、C5.0算法。[教学重点与难点] ID3算法、C5.0算法
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 7.1 基本概念 7.2 数据泛化 7.3 属性相关分析 7.4 挖掘概念对比描述
7.5 挖掘大数据库的描述型统计信息
第八章 关联挖掘
建议学时:2 [教学目的与要求] 了解关联挖掘和的方法,掌握Apriori算法 [教学重点与难点] Apriori算法
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 8.1 基本概念
8.2 单维布尔逻辑关联规则挖掘 8.3 多层关联规则挖掘 8.4 多维关联规则挖掘
8.5 关联规则聚类系统(ARCS)8.6 关联规则其它内容
第九章
聚类分析
建议学时:2 [教学目的与要求] 了解什么是聚类分析、聚类和分类的区别,掌握聚类分析的算法。[教学重点与难点] 聚类分析的算法
[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 9.1 什么是聚类分析
9.2 聚类分析中的数据类型 9.3 主要聚类算法的分类
第十章 分类 建议学时:2 [教学目的与要求] 了解什么是数据挖掘的分类,掌握KNN(K-Nearest Neighbor)分类和Bayes分类 [教学重点与难点] KNN(K-Nearest Neighbor)分类和Bayes分类 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 10.1 10.2 10.3 10.4 10.5
第十一章 预测 建议学时:2 [教学目的与要求] 了解预测算法,掌握回归预测、广义线性GenLin模型预测、支持向量机预测 [教学重点与难点] 回归预测、广义线性GenLin模型预测、支持向量机预测 [授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅 [授 课 内 容] 11.1 11.2 预测的基本知识 预测的数据准备 分类的基本知识 决策树分类 支持向量机分类
KNN(K-Nearest Neighbor)分类 Bayes分类 11.3 11.4 11.5 11.6
预测的主要方法 回归预测
广义线性GenLin模型预测 支持向量机预测
撰稿人:蔡永明 审核人:
数据仓库与数据挖掘学习心得通过数据仓库与数据挖掘的这门课的学习,掌握了数据仓库与数据挖掘的一些基础知识和基本概念,了解了数据仓库与数据库的区别。下面谈谈我对数据仓......
决策树在教学评价中的应用研究摘 要 决策树学习是人们广泛使用的一种归纳推理形式。先就决策树和决策树学习算法进行介绍,然后用实例阐述决策树在教育信息处理中的应用,主要以......
结合《数据仓库与数据挖掘》课程内容,写一篇与该课程内容相关的论文。参考题目:1.数据挖掘技术在数据仓库中的应用2.关联规则在数据仓库中的应用3.Aproior算法及其改进4.决策......
广西财经学院2007——2008学年2005级《数据仓库与数据挖掘》卷2、请列举您使用过的各种数据仓库工具软件(包括建模工具,ETL工具,前端展现工具,OLAP Server、数据库、数据挖掘工......
数据仓库与数据挖掘第一次作业电子商务这一行业目前还处于摸索期,有很多需要完善和可以创新的地方。这学期选修了袁老师的《电子商务》,印象最深的就是老师提过这样的想法:电商......