数据挖掘关联规则实验报告由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数据挖掘关联实验报告”。
实验七
关联规则
1.实验目标
• 使用SSAS进行关联规则挖掘实验
2.实验要求
(1)按“实验内容”完成操作,并记录实验步骤;
(2)回答“问题讨论”中的思考题,并写出本次实验的心得体会;(3)完成实验报告。
3.实验内容
生成市场篮方案。Adventure Works 的市场部希望改进公司的网站以促进越区销售。在更新网站之前,需要根据客户的在线购物篮中已有的其他产品创建一个可预测客户购买需求的数据挖掘模型。这些预测还有助于市场部将可能被集中购买的项统一放置在网站的一个位置上。通过实验,创建关联规则模型,可预测可能出现在购物篮中的其他项或客户想要放入购物篮的项。
4.实验步骤
(1)创建市场篮挖掘模型结构
1.在 Busine Intelligence Development Studio 的解决方案资源管理器中,右键单击“挖掘结构”,再选择“新建挖掘结构”。此时,系统将打开数据挖掘向导。
2.在“欢迎使用数据挖掘向导”页上,单击“下一步”。
3.在“选择定义方法”页上,确保已选中“从现有关系数据库或数据仓库”,再单击“下一步”。4.在“选择数据挖掘技术”页的“您要使用何种数据挖掘技术?”下,选中“Microsoft 关联规则”,再单击“下一步”。
“选择数据源视图”页随即显示。默认情况下,“可用数据源视图”下的 Adventure Works DW 为选中状态。
5.单击“下一步”。
6.在“指定表类型”页上,选中 vAocSeqOrders 表旁的“事例”复选框,选中
vAocSeqLineItems 表旁边的“嵌套”复选框,再单击“下一步”(注意先在视图中建立两个表之间的关联)。
7.在“指定定型数据”页上,依次清除 CustomerKey 旁边的“键”复选框和 LineNumber
旁边的“键”和“输入”复选框。
8.选中 Model 列旁边的“键”和“可预测”复选框。然后,系统也将自动选中“输入”复选框。
9.单击“下一步”。
10.在“指定列的内容和数据类型”页上,单击“下一步”。11.在“完成向导”页的“挖掘结构名称”中,键入 Aociation。12.在“挖掘模型名称”中,键入 Aociation,再单击“完成”。
(2)调整关联模型的参数和处理关联模型
在处理上一个任务中与“关联”挖掘结构一起创建的初始挖掘模型之前,必须更改以下两个参数的默认值:Support 和 Probability。Support 定义规则被视为有效前必须存在的事例百分比。Probability 定义关联被视为有效前必须存在的可能性。
调整关联模型的参数步骤如下:
1.打开数据挖掘设计器的“挖掘模型”选项卡。
2.右键单击设计器网格中的“关联”列,然后选择“设置算法参数”。
系统将打开“算法参数”对话框。
3.在“算法参数”对话框的“值”列中,设置以下参数:
MINIMUM_PROBABILITY = 0.1 MINIMUM_SUPPORT = 0.01 4.单击“确定”。
处理关联模型步骤如下:
1.在 Busine Intelligence Development Studio 的“挖掘模型”菜单上,选择“处理挖掘结构和所有模型”。
系统将打开“处理挖掘结构关联”对话框中,单击“关闭”。
(3)浏览市场篮模型
使用数据挖掘设计器的“挖掘模型查看器”选项卡中的 Microsoft 关联查看器浏览该模型。浏览模型时,可以轻松地查看可能同时出现的产品,并可浏览项之间的关系。还可以筛选出较弱的关联,并对新浮现的模式有一个总体的概念。
Microsoft 关联查看器包含三个选项卡:“项集”、“规则”和“依赖关系网络”。
“项集”选项卡
“项集”选项卡显示与 Microsoft 关联算法发现的项集相关的三种重要信息:支持度(发生项集的事务的数量)、大小(项集中项的数量)以及项集的实际构成。根据算法参数的设置方式,算法可以生成大量的项集。使用“项集”选项卡顶部的控件,可以筛选查看器,使其仅显示包含指定的最小支持度和项集大小的项集。
也可以使用“筛选项集”框来筛选查看器中显示的项集。例如,若要仅查看包含有关 Mountain-200 自行车信息的项集,可在“筛选项集”中输入 Mountain-200。您将在查看器中看到,只有包含“Mountain-200”字样的项集被显示。查看器中返回的每个项集都包含有关销售 Mountain-200 自行车事务的信息。例如,在“支持度”列中包含值 710 的项集表示:在所有事务中,710 个购买 Mountain-200 自行车的人也购买了 Sport-100 自行车。
“规则”选项卡
“规则”选项卡显示与算法发现的规则相关的以下信息。 概率 规则发生的可能性。
重要性 用于度量规则的有用性,值越高则意味着规则越有用。只看概率可能会产生误解。例如,如果每个事务都包含一个 x 项,规则 y 预测 x 发生的概率为 1,即 x 一定会发生。即使规则的准确性很高,但这并未传达很多信息,因为不管 y 如何,每个事务都会包含 x。 规则 规则的定义。
像使用“项集”选项卡一样,可以筛选规则,以便仅显示最关心的规则。例如,如果只想查看包含 Mountain-200 自行车的规则,可在“筛选规则”框中输入 Mountain-200。查看器将仅显示包含“Mountain-200”字样的规则。每条规则都可以根据事务中其他项的发生情况来预测某个项的发生情况。例如,由第一个规则可知:如果一个人购买了 Mountain-200 自行车和水壶,则此人还会购买 Mountain 水壶套的概率为 1。
“相关性网络”选项卡
使用“相关性网络”选项卡,可以研究模型中不同项的交互。查看器中的每个节点表示一个项;例如,Mountain-200 = Existing 节点表示事务中存在 Mountain-200。通过选择节点,可以使用选项卡底部的彩色图例来确定模型中的项与其他的项的相互确定关系。
滑块与规则的概率关联。上下移动滑块可以筛选出弱关联。例如,在“显示”框中,选择“仅显示属性名称”,再单击 Mountain Bottle Cage 节点。查看器显示,Mountain 水壶套预测了水壶和 Mountain-200 自行车,而水壶和 Mountain-200 自行车也预测了 Mountain 水壶套。这意味着,这些项有可能同时在事务中出现。也就是说,如果某个客户购买了自行车,则他也可能会购买水壶套和水壶。
5.实验结果及问题讨论
(1)根据实验结果给出市场部统一放置在网站的一个位置上的可能被集中购买的项的建议。通过项集与规则图,我们可以看出各商品之间的关联程度,及这种关联程度的可信度,通过综合来达到相关联商品的相互促销
通过点击依赖关系网络图中的各项,观察其周围与之相关的其他项的数量,数量越多。说明此项影响其他销售的项目越多,我们就可对此项进行促销,还可将相互影响的物品放在一起,形成相互促销。(2)写出自己对关联规则的理解。
对于那些很难直接看出关系的各项交易,我们可以通过查询其交易的相关性,即购买此种产品会连带购买另一产品的概率,来发现其隐藏的关系,从而通过产品位置的调整或相互促销,来提高销售量
报告的格式和结构通常会根据不同的领域和目的而有所不同,我们需要根据具体要求进行调整。编写报告时,应注意语言表达的准确性和专业性,避免使用过多的行话和术语。报告的质量和......
报告应该包括引言、正文和结论三个部分,每个部分的内容都需要相互衔接,形成一个完整的逻辑结构。编写报告时,我们需要注意遵循学术规范和道德要求,引用他人的研究和观点时应注明......
第4章 无监督学习4.1基本概念图4.1数据点的三个自然4.2k-均值聚类4.2.1k-均值算法图4.2k-均值算法计算机组成原理(第三版)图4.3k-均值算法的运行实例4.2.2k-均值算法的硬盘......
客户关系管理论文:基于关联规则的零售业CRM的设计和实现【中文摘要】随着我国零售行业竞争日益激烈,尤其是大型超市越来越多,传统的营销模式已经不适应现代的新形势了。客户......
报告可以帮助人们了解特定问题背后的原因和影响,为决策提供信息支持。写一份较为完美的报告需要一定的准备和技巧。首先,我们应该明确报告的目的和受众,以便确定信息的重点和呈......