第1篇:复合函数的奇偶性
复合函数的奇偶性特点是:”内偶则偶,内奇同外”。F(G(X)),若G(X)为偶函数,当任意取关于X对称的两点X1,-X1时,有G(X1)=G(-X1),所以F(G(X1))=F(G(-X1))。因此内偶则偶。
扩展资料
F(G(X)),若G(X)为偶函数,当任意取关于X对称的'两点X1,-X1时,有G(X1)=G(-X1),所以F(G(X1))=F(G(-X1))。因此内偶则偶。
F(G(X)),若G(X)为奇函数,当任意取关于X对称的两点X1,X2时,有-G(X1)=G(-X1),所以当F为偶时,F(G(X1))=F(-G(X1))=F(G(-X1))则整体为偶。当F为奇时,F(G(X1))=-F(-G(X1))=-F(G(-X1))则整体为奇。
第2篇:函数奇偶性判断
函数奇偶性的判断口诀:内偶则偶,内奇同外。验证奇偶性的前提:要求函数的定义域必须关于原点对称。
扩展资料
判断方法
1、先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性。
2、根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)
3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。
4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。
5、若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇。
第3篇:函数奇偶性教案
函数的奇偶性
授课教师——李振明
授课班级——高一(8)
教学目的:
1、使学生理解函数的奇偶性的概念,并能判断一些简单函数的奇偶性;
2、进一步培养学生分析问题和解决问题的能力。教学重点和难点: 函数奇偶性的判断
一、引入新课: 题1:已知函数f(x)=3x 画出图形,并求: f(2),f(-2),f(-x)。
题2:已知函数g(x)= 2x2画出图形,并求: g(1),g(-1),g(-x)。
考察:f(x)与f(-x),g(x)与g(-x)之间的关系是什么?
二、定义:对于函数f(x),在它的定义域内,任
意一个x.①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
三、例:判断下列函数的奇偶性
① f(x)=x5+x ② f(x)=x4-x2
第4篇:函数奇偶性教案
§1.3.2函数的奇偶性
教学目标
1.知识与技能:
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;
2.过程与方法:
通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.
3.情态与价值:
通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.
教学重点和难点
教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法
教学过程:
一:引入课题
观察并思考函数
以及y=|x|的图像有哪些共同特征?这些特征在函数值对应表是如何体现的?(学生自主讨论)根据学生讨论的结果推出偶函数的定义。
偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)f(x),那么f(x)就叫做偶函数.
(学生活动)
依照偶函数的定义给出奇