函数奇偶性教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“函数奇偶性的教案”。
函数的奇偶性
廖登玲
一、教学目标:
1、知识与技能 :
理解奇函数、偶函数的概念,掌握判断函数奇偶性的方法;
2、过程与方法:
通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶
性概念解决简单的问题,领会数形结合的数学思想方法;培养发现问题、分析问题、解决问题的能力.
二、教学重难点:
教学重点:函数奇偶性概念及其判断方法。
教学难点:对函数奇偶性的概念的理解及如何判定函数奇偶性。
三、教学方法:
通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.在鼓励学生主体参与的同时,教会学生清晰的思维、严谨的推理,并顺利地完成书面过程
四、教学过程:
1、创设情境,引入课题:
让学生自己列举出生活中对称的实例,师:我们知道,“对称”是大自然的一种美,在我们的生活中,有许多的对称美:如美丽的蝴蝶、古建筑等等。这种对称美在数学中也有大量的反应,这节课我们就来一起发现数学中的对称美。
2、观察归纳,形成概念:
(1)请同学们利用描点法做出函数f(x)=x/3 与函数g(x)=x^3 的图像,观察这两个函数图像具有怎样的对称性并思考和讨论以下的问题?
①这两个函数的图像有什么共同的特征?②从图像看函数的定义域有什么特点? 生:函数y=x/3的图像是定义域为R的直线,函数y=x^3的图像是定义域为R的曲线,它们都关于原点对称,且当x属于函数定义域时,它的相反数-x也在定义域内。
(2)让学生注意到x=-
3、-
2、-1、0、1、2、3 时两个函数的函数值,可以发现两个函数的对称性反应到函数上具有的特性:关于原点对称,进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,让学生通过运算发现函数的对称性实质:当自变量互为相反数时,函数值互为相反数。然后通过解析式给出简单证明:f(-x)=(-x)/3=-(x/3)=-f(x);g(-x)=(-x)^3=-(x^3)=-g(x),进一步说明这个特性对定义域内的任意一个x都成立。
(3)师:具有此种特征的函数还有很多,我们能不能用数学语言对这类函数的特征进行描述?
(板书):如果对于函数定义域内的任意一个x,都有f(x)=-f(-x),那么函数叫做奇函数。
3、设疑答问,深化概念
教师设计下列问题并组织学生讨论思考回答:
问题1:奇函数定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?
答:在奇函数的定义中“如果对于函数f(x)的定义域内任意一个x”这句话它表示函数奇偶性针对的是函数的整个定义域,它表示函数的奇偶性是函数在定义域上的一个整体性
质,它不同于单调性,单调性它针对的是定义域中的某个区间,是一个局部性质。问题2:-x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?
答:二者在几何上关于原点对称,函数的定义域关于原点对称是一个函数为奇函数或偶函数的首要条件。
问题3:(1)对于任意一个奇函数f(x),图像上的点f(x)关于原点的对称点f(-x)的坐标是什么?点(-x,-f(x))是否也在函数f(x)的图像上?由此可得到怎样的结论?(2)如果一个函数是奇函数,定义域中的x可以等于0.那么f(0)的值等于多少?
引导学生通过回答问题3把奇函数图像的性质总结出来,即:①函数f(x)是奇函数,则其图像关于原点对称,②对于奇函数f(x),若f(0)有定义,则f(0)=0.然后教师利用多媒体演示两幅关于y轴对称的函数图像,让学生仿照奇函数,观察图像,给出偶函数的定义:如果对于函数定义域内的任意一个x,都有f(x)=f(-x),那么函数叫做偶函数。并让学生自己研究一下偶函数图像的性质,即函数f(x)是偶函数,则其图像关于y轴对称。
4、知识应用,巩固提高 例
1、判断下列函数的奇偶性:
(1)f(x)=1/x(奇函数)
(2)f(x)=-(x^2)+1(偶函数)
(3)f(x)=x+1(非奇非偶)
(4)f(x)=0(既奇又偶)
选例1的第(1)小题板书来示范解题的步骤:对于函数f(x)=1/x,其定义域为(-∞,+∞).因为对定义域内的每一个x,有-x∈(-∞,+∞),且f(-x)=-1/x=-f(x),(f(x)+f(-x)=0), 所以,函数为奇函数。
其他例题让几个学生板演,其余学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行及时纠正,教师要适时引导学生做好总结归纳。(1)通过例1总结判断函数奇偶性的步骤:
①求出函数的定义域I,并判断若x∈I,是否有-x∈I
②验证f(-x)=f(x)或f(-x)=-f(x)(f(x)-f(-x)=0 或f(x)+f(-x)=0)③得出结论
(2)通过讲解板演同学的解题,得出函数奇偶性的相关性质:
① 对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数,是偶函数但不是奇函数,既是奇函数又是偶函数,既不是奇函数也不是偶函数。
②存在既是奇函数,又是偶函数的函数:f(x)=0
五、总结反思:
从知识、方法两个方面来对本节课的内容进行归纳总结,让学生谈本节课的收获,并进行反思。从而关注学生的自主体验,反思和发表本堂课的体验和收获。
六、任务后延,兴趣研究:
1、思考:如果改变奇函数的定义域,它还是奇函数吗?如:y = x3(x≠0),y = x3(x≠1),y = x3(x≥0),y=x3(-1≤x≤1),试判断它们是奇函数吗?
2、课后作业(略)
函数的奇偶性授课教师——李振明授课班级——高一(8)教学目的:1、使学生理解函数的奇偶性的概念,并能判断一些简单函数的奇偶性;2、进一步培养学生分析问题和解决问题的能力。 教......
§1.3.2函数的奇偶性教学目标1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法:通过函数奇偶性概念的形成过......
函数奇偶性的简单应用知识与技能:(1)掌握函数奇偶性的定义以及奇偶函数图象特点,并能灵活应用; (2)会判断函数的奇偶性;会运用函数奇偶性求函数值和参数.过程与方法:通过具体例......
《函数的奇偶性》教案一、教学目标【知识与技能】理解函数的奇偶性及其几何意义【过程与方法】利用指数函数的图像和性质,及单调性来解决问题【情感态度与价值观】体会指数......
3.4 函数的基本性质 (1)奇偶性(课时一)教学目标1.能够理解函数奇偶性的概念.2.通过参与函数奇偶性概念的形成过程,养成观察、归纳、抽象的能力,渗透数形结合的数学思想方法.3.学生能够......