圆周角与圆心角教案_圆心角圆周角教案

教案模板 时间:2020-02-28 04:08:29 收藏本文下载本文
【www.daodoc.com - 教案模板】

圆周角与圆心角教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“圆心角圆周角教案”。

圆周角和圆心角的关系

教学目标(一)教学知识点 1.了解圆周角的概念. 2.理解圆周角定理的证明.(二)能力训练要求

经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.

(三)情感与价值观要求

通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法. 教学重点

圆周角概念及圆周角定理. 教学难点

认识圆周角定理需分三种情况证明的必要性. 教学方法 指导探索法. 教具准备 投影片两张

第一张:射门游戏(记作§3.3.1A)第二张:补充练习1(记作§3.3.1B)教学过程

Ⅰ.创设问题情境,引入新课

[师]前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角.

[生]学习了圆心角,它的顶点在圆心.

[师]圆心是圆中一个特殊的点,当角的顶点在圆心时,就有圆心角.这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?

Ⅱ.讲授新课 1.圆周角的概念

[师]同学们请观察下面的图(1).(出示投影片3.3.1A)这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关.

[师]图中的∠ABC,顶点在什么位置?角的两边有什么特点?

[生]∠ABC的顶点B在圆上,它的两边分别和圆有另一个交点.(通过学生观察,类比得到定义)圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角.

[师]请同学们考虑两个问题:(1)顶点在圆上的角是圆周角吗?

(2)圆和角的两边都相交的角是圆周角吗? 请同学们画图回答上述问题.

[师]通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:

(1)角的顶点在圆上;

(2)两边在圆内的部分是圆的两条弦. 2.补充练习1(出示投影片§3.3.1B)判断下列图示中,各图形中的角是不是圆周角,并说明理由.

答:由圆周角的两个特征知,只有C是圆周角,而A、B、D、E都不是. 3.研究圆周角和圆心角的关系.

[师]在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?

我们知道,在同圆或等圆中,相等的弧所对的圆心角相等.那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?

[师]请同学们动手画出⊙O中

所对的圆心角和圆周角.观察

所对的圆所对的圆周角有几个?它们的大小有什么关系?你是通过什么方法得到的?心角和所对的圆周角之间有什么关系?

[生] 所对的圆周角有无数个.通过测量的方法得知:

所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.

[师]对于有限次的测量得到的结论,必须通过其论证,怎么证明呢?说说你的想法,并与同伴交流.

[生]互相讨论、交流,寻找解题途径.

特殊[师生共析]能否考虑从特殊情况入手试一下.圆周角 一边经过圆心.

1由下图可知,显然∠ABC=∠AOC,结论成立.

(学生口述,教师板书)如上图,已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC. 求证:∠ABC=1AOC. 2证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO. ∵OA=OB,∴∠ABO=∠BAO. ∴∠AOC=2∠ABO. 即∠ABC=1∠AOC. 2[师]如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)

[生甲]如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.

由刚才的结论可知:

11∠AOD,∠CBD=∠COD,2211∴∠ABD+∠CBD=(∠AOD+∠COD),即∠ABC=∠AOC.

22∠ABD=[生乙]在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.

由前面的结果,有

11∠AOD,∠CBD=∠COD. 2211∴∠ABD-∠CBD=(∠AOD-∠COD),即∠ABC=∠AOC.

22∠ABD=[师]还会有其他情况吗?请思考. [生]不会有. [师]经过刚才我们一起探讨,得到了什么结论? [生]一条弧所对的圆周角等于它所对的圆心角的一半.

[师]这一结论称为圆周角定理.在上述经历探索圆周角和圆心角的关系的过程中,我们学到了什么方法?

[生]由“特殊到一般”的思想方法,转化的方法,分类讨论的方法,„„ [师]好,同学们总结得很好.由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略.今后我们在处理问题时,注意运用.

4.课本P103,随堂练习1、2 Ⅲ.课时小结

[师]到目前为止,我们学习到和圆有关系的角有几个?它们各有什么特点?相互之间有什么关系?

[生]和圆有关系的角有圆心角和圆周角.圆心角顶点在圆心,圆周角顶点在圆上,角的两边和圆相交.一条弧所对的圆周角等于它所对的圆心角的一半.

[师]这节课我们学会了什么定理?是如何进行探索的?

[生]我们学会了圆周角定理.通过分类讨论的思想方法,渗透了由特殊到一般的转化方法.对定理进行了研究和证明.

[师]好,同学们今后在学习中,要注意探索问题方法的应用.

注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.

(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”. Ⅳ.课后作业 习题3.4 Ⅴ.活动与探究

同学们知道:顶点在圆上,并且两边都和圆相交的角,叫圆周角,因为一条弧所对的角圆周角等于它所对的圆心角的一半,而圆心角的度数等于它所对的弧的度数,所以圆周角的度数等于它所对的弧的度数的一半.类似地,我们定义:顶点在圆外,并且两边都和圆相交的角叫圆外角.如下图中,∠DPB是圆外角,那么∠DPB的度数与它所夹的两段弧

和的度数有什么关系?类似地可定义圆内角及其度量.

(1)你的结论用文字表述为(不准出现字母和数学符号):________;(2)证明你的结论.

[过程]让学生通过思考讨论,想办法把圆外角转化成和已学过的圆周角联系起来,借助圆周角把∠DPB的度数转化成它所夹的两段弧一半.

[结果](1)圆外角的度数等于它所夹弧的度数差的一半.(2)证明:连结BC.

∵∠DCB=∠DPB+∠ABC,∴∠DPB=∠DCB-∠ABC. 而∠DCB=∠ABC=121(2和的度数差的12的度数. 的度数.

∴∠DPB=板书设计的度数-的度数).

§3.3.1 圆周角和圆心角的关系(一)

一、1.探究圆周角的定义及其特征.

2.探究圆周角定理及其证明.

二、课堂练习

三、课时小结

四、课后作业

《圆周角与圆心角关系》说课稿

《圆周角与圆心角关系》说课稿作为一位兢兢业业的人民教师,编写说课稿是必不可少的,借助说课稿可以有效提升自己的教学能力。说课稿应该怎么写才好呢?下面是小编为大家收集的《......

《圆周角与圆心角关系》说课稿

刀豆文库小编为你整合推荐6篇《圆周角与圆心角关系》说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

圆周角与圆心角的关系 说课稿

《圆周角与圆心角的关系》说课稿13组各位评委老师你们好,我是,我说课的内容是北师大版九年级下册第三章第4节《圆周角与圆心角的关系》第1课时。我将从教材分析、教学目标、教......

圆周角与圆心角的大小关系说课稿

圆周角与圆心角的大小关系说课设计黄土岗中学数学教研组------胡德东一、说教材 1、教材的地位与作用: 本课内容是在学生已经学习圆心角、弧、弦、弦心距之间的关系的基础上......

圆周角与圆心角的关系教学反思

《圆周角与圆心角的关系》第二课时教学反思韩亚男《圆周角与圆心角的关系》是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有......

下载圆周角与圆心角教案word格式文档
下载圆周角与圆心角教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文