3.1 直线的倾斜角与斜率 教学设计 教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“倾斜角与斜率教学设计”。
教学准备
1.教学目标
(一)知识与技能
理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)过程与方法
通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.
(三)情感、态度与价值观
通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.
2.教学重点/难点
重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用. 难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.
3.教学用具
投影仪等.4.标签
数学,直线与方程
教学过程
(一)先研究特殊情况下的两条直线平行与垂直
上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式.现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直. 讨论: 两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直
设直线 L1和L2的斜率分别为k1和k2.我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的.所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系? 首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2. 即 k1=k2.
反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2. 由于0°≤α1<180°,0°≤α<180°,∴α1=α2.
又∵两条直线不重合,∴L1∥L2. 结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2;反之则不一定.下面我们研究两条直线垂直的情形.
如果L1⊥L2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有 α1=90°+α2.
因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°. 可以推出 : α1=90°+α2.
L1⊥L2.
注意: 结论成立的条件.即如果k1·k2 =-1, 那么一定有L1⊥L2;反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证.转动时, 可使α1为锐角,钝角等).例题
例1 已知A(2,3),B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为
k1=k2=0.5, 所以
直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明.(借助计算机作图, 通过观察猜想:四边形ABCD是平行四边形,再通过计算加以验证)解同上.例3
已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1=(6-0)/(3-(-6))=2/3,直线PQ的斜率k2=(6-3)(-2-0)=-3/2,因为
k1·k2 =-1 所以
AB⊥PQ.例4 已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习
P89 练习 1.2.课后小结
(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 垂直.(3)应用直线平行的条件, 判定三点共线.布置作业
P89 习题3.1 5.8.课堂小结
(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 垂直.(3)应用直线平行的条件, 判定三点共线.课后习题 作业:
P89 习题3.1 5.8.板书
判定两条直线平行或判定两条直线平行或
刀豆文库小编为你整合推荐4篇《直线的倾斜角与斜率》教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
刀豆文库小编为你整合推荐8篇直线的倾斜角与斜率教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
直线的倾斜角与斜率教学设计作为一位优秀的人民教师,编写教学设计是必不可少的,教学设计是对学业业绩问题的解决措施进行策划的过程。那要怎么写好教学设计呢?以下是小编精心整......
8.1.2倾斜角与斜率张汉雷一、教学目标1、知识技能目标:(1)初步了解直线倾斜角的概念,并会判直线的倾斜角。(2)会用利正切求直线的斜率,理解直线斜率的几何意义。(3)掌握两点求......
“直线的倾斜角和斜率”教学设计金华市艾青中学 阮彩香一、内容和内容解析内 容:直线倾斜角与斜率的概念,直线的斜率公式. 内容解析:本课是人教版数学必修2第一节直线的倾斜角与......