高中数学必修4 第二章课例:平面向量的应用举例由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“必修4第二章平面向量”。
金太阳新课标资源网wx.jtyjy.com
回味平面向量的章节导言——课例:平面向量的应用举例 1 说明
[1]《普通高中数学课程标准(实验)》指出:“高中数学课程是以模块和
专题的形式呈现的.因此,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的有机联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力.例如,教学中要注重函数、方程、不等式的联系;向量与三角恒等变形、向量与几何、向量与代数的联系;数与形的联系„„”“向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景„„能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.”
为了深入研究新课标、新课程、新理念,笔者在上述理念的启导下,在自己所在学校开设了一节公开课——平面向量应用举例(选自人教社必修4第二章),受到了其他教师的一致好评.现对这节课的课堂教学过程简录如下,并根据课后大家的点评以及个人的体会和看法做些分析,供大家参考,如有不妥之处敬请同行批评指正.2 教学过程简录
2.1导言引入,设置悬念
教师:前面我们一起学习了向量的线性运算和数量积运算,因为有了运算,向量的力量无限.(学生笑了笑,并示意的点了点头)
教师:今天我要带领大家再一次来回味一下本章内容的章节导言.(“哦!„„”学生发出一阵诧异和期待的声音)
教师:课本73页平面向量的章节导言中有着这么两段话:
(多媒体课件演示,以下不再注明)
向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算(运算律),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.教师:哪句话大家看后有特别深的体会啊?
学生:向量有深刻的几何背景,是解决几何问题的有力工具.学生:向量是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中有广泛的应用.教师:是的.我们在学习向量的线性运算和坐标表示的时候,就体会到了向量通过坐标运算可以把几何问题转化成代数问题.今天我们要通过研究几个具体的问题来进一步认识向量是沟通代数、几何、三角函数的一种工具.教师:首先我们先看看向量是怎么沟通代数的,下面大家请看屏幕这道题目.2.1深化导言,层层递进
_______________
例
1、证明:对于任意的a、b、c、dR,恒有不等式(ac+bd)(a22b)(c22d).2金太阳新课标资源网
金太阳新课标资源网wx.jtyjy.com
(以一道不等式证明引起学生思考,学生纷纷动手,巡视片刻,绝大部分学生采用作差比较.但从他们都是紧皱着眉头看出证出这道题有困难.)
教师:不等式的右边是两个因式的乘积,大家能否看出每个因式“像什么”?比如a2b“像”我们学过的哪个知识点?(片刻,有些学生像领悟到了什2
么)
学生1:向量的模.(有些学生感到困惑)
学生2:(迫不及待地)应该说是一个向量模的平方.22教师:对!如果我们构造个向量m(a,b),则ab就可看作向量m模的平方.(学生都明白过来了,轻声地说那cd
n(c,d)模的平方.)22不就可以看作向量
教师:不错,大家把不等式的右边看作是两个向量模的平方的乘积,那么不等式的左边又是什么呢?或者说像我们学习到的哪种模式?接下来要怎么证明请大家思考一下.
学生3:我觉得在构造向量m,n后,不等式的左边就可以看作是向量m,n数
量积的坐标表示.设向量m,n的夹角为,则有:
mnacbd.然
行放缩就可以得到结论了.(听到他的表述,全班同学都发出赞许的声音:“对哦!”)
(板书解题过程,略)
教师:这道题目如果纯粹采用代数的方法去证明可能很困难,但是我们在这里通过构造法利用向量的数量积知识来处理,显得比较简单和直观,下面我们来看一个类似的变式题目.练习
1、求函数f(x)
最小值.(学生在沉思)
教师:能否用向量的方法去思考.(稍微点拨,学生恍然大悟)
学生4:构造向量u(x1,1),v(4x,3),那么函数f(x)就可以看作是向量u,v模的和,然后利用uvuv就可求得f(x)的最小值为5.(听到她如此流畅的表述,全班同学都投以赞许的目光,并发出啧啧的声音表示向量在代数方面的应用的确奇妙.)
教师:以上那两个例题是说明向量在代数中的应用,当然以后我们学了其它知识也可用其它方法来做.接下来我们要来看看可用向量方法来解决平面几何中的一些问题.例
2、平行四边形是表示向量加法与减法的几何模型.教师:前面我们学习过了,凡是涉及长度问题常常考虑向量的什么?
学生:向量的数量积.教师:不错!凡是涉及到向量的模,我们考虑它的数量积.那大家发现了什么没有?
学生5:计算
AC22AC与DB22发现 AD22(ABAD)AB2ABAD DB2222(ABAD)ABAD2ABAD
ACDB22(AB22AD)
因此得出结论是:平行四边形的两条对角线的平方和等于四条边的平方和.教师:完全正确!同学们听明白了没有?
学生:摁.(学生们笑了笑)
教师:平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的交角,因此我们可以用向量方法解决部分几何问题.教师:从这个例题我们看到了解决几何问题时,先用向量表示相应的点、线段夹角等几何元素;然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系;最后再把运算结果“翻译”成几何关系,得到几何问题的结论.下面我们共同来用向量的方法来解决另一个平面几何中的问题.练
2、如图2,已知四边形ABCD为菱形,请用向量方法证明ACBD.学生6:只需证出ACDB0即可.教师:那要怎么证明呢? 学生6:因为ACABAD,DBABAD,2所以ACDB(ABAD)(ABAD)AB因为22ABCD是菱形,所以ABAD,所以ABAD0.因此ACDB0,所以ACBD.教师:看来向量在平面几何的简单应用同学们可以掌握了.那同学们,你们说平面向量的哪块知识是沟通平面几何的关键?
学生:平面向量的数量积.教师:不错,平面向量的数量积是一个非常重要的概念,利用它可以容易地证明平面几何的许多命题,从而使几何和向量有较好的联系和沟通.因此我们
金太阳新课标资源网wx.jtyjy.com
还可以用向量知识可以证明或推导许多几何定理和其他性质.学生:这么奇妙,原来向量这么有用.(学生都赞同地点了点头)
教师:是的.那我们又要回到本章导言了,那你们说向量还沟通什么知识我们没给出例子的? 学生:三角函数.教师:看来同学们都很期待嘛.教师:那接下来我们就高姿态的看看向量是如何
和三角紧密在一起的.例
3、如图3,在平面直角坐标系中,以原点
为圆心,单位长度为半径的圆上有两点A(cos,sin),图
3B(cos,sin),试用A、B两点的坐标表示AOB的余弦值.教师:前面我们刚提过涉及到夹角问题我们可用哪些相关知识来解决?
学生:向量的数量积.教师:完全正确!那谁来帮忙解答这题.学生
即
cos()coscossinsinOAOBcoscossinsin7:cosAOBcos()11OAOB.学生:太神奇了!这个公式能用吗?
教师:当然.这次我们发现了新大陆啊!这个公式可是沟通第二章与第三章的桥梁,把书翻到126页,同学们发现什么?
学生:就是刚才我们证明的这个公式.教师:对,我们把这个公式叫做差角的余弦公式.有了它,我们可以做很多工作,比如我们利用这个公式来算算cos15.学生8:cos15cos(4530),4.教师:反应很快嘛.教师:例3这个例子,主要是让同学们体会向量在三角中的运用,同时也为后面章节中两角差的余弦公式的学习作准备.比如根据差角的余弦公式可得到和角的余弦公式及差角与和角的正弦公式,同学们自己下去可自行探究.今天我们在这里扯远了先暂时不提.2.3体验过程,完善认知
教师:现在请同学们谈谈学习这节课的感受,究竟你获得了哪些知识? 学生5:向量是集数与形于一身,既有代数的抽象性又有几何的直观性.学生3:觉得向量数量积是一个很重要的概念.学生7:我也觉得向量的数量积ab是一个非常重要的概念,它是解决一些涉及距离、夹角等问题的一种有力工具.„„
金太阳新课标资源网wx.jtyjy.com
教师:今天我们通过学习向量在代数、几何、三角中的应用,明白了“数学是有用的”吧!而且数学是自然的、清楚的.希望同学们能类比地学、联系地学,对数学有个正确的认识.(教室响起一片热烈的掌声和笑声)教学特色简评
文【1】指出:“数学的发展既有内在的动力,也有外在的动力.在高中数学的教学中,要注重数学的不同分支和不同内容之间的联系,数学与日常生活的联系,数学与其他学科的联系.”本节教学就是基于这点,使学生经历用向量方法解决某些简单的平面几何问题、代数问题以及三角问题的过程,体会向量是处理几何问题、代数问题等的工具,提高学生运算能力和应用能力.下面就简单地评说一下该课例的特色之处.3.1注重提高学生的数学思维能力
新课程标准实施之后的数学课,不再以“重点是否突出,内容是否完成,技能是否掌握”为单一的知识目标,也不再是以“板书是否清晰,语言是否流畅,用时是否合理”等片面的艺术价值观来评价一堂课.它更注重过程性原则,是否让学生真正地去“感受数学”;是否充分体现学生在发展中的主体地位,在数学活动中充满探索和创造等等.而这一切都是以发展学生的思维水平和能力为宗旨.这堂课采用了以“回味”的趣味性导入,至始至终引导学生应用向量的意识,把学生应用能力的培养放在优先地位,这充分体现了以学生为主体的教学理念.比如例1与练1,学生很可能用不等式与函数的知识直接去处理,可是经过引导可用向量方法来做,学生的思维马上就可以发散出去.再比如把向量应用在三角方面,得到了差角的余弦公式,有助于学生了解数学概念和结论产生的过程,体验数学研究的过程和创造的激情.后来又说“比如根据差角的余弦公式可得到和角的余弦公式及差角与和角的正弦公式,同学们自己下去可自行探究.”这也有助于培养学生独立思考和勇于探究的习惯,培养学生发现、提出、解决数学问题的能力,有助于发展学生的创新意识和实践能力.3.2强调本质,注意适度形式化
高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质.数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探究活动,使学生理解数学概念、结论逐步形成的过程,进一步理解数学的真正本质.很多学生学了向量只知道向量的外表形式即它可以线性运算、坐标表示,却不知向量的真正内涵与使用价值.因此根本不知道向量可用在哪里,更谈不上对知识的承上启下,因此感觉数学是索然无味的.本节课就克服了这点,用“回味”来吸引学生,一直努力揭示向量是解决几何等其他问题的一种有力工具,以及培养学生应用的意识.例1这个题目通过不等式的证明引出向量的数量积,使学生达到了对数学概念的深刻理解,从而真正认识了数学的表达形式与本质的统一.文【2】也指出:“平面向量的教学着眼于让学生掌握处理几何问题的代数方法,体会数形结合思想.向量既是代数的对象,又是几何的对象.作为代数对象,向量可以进行运算;作为几何对象,向量有方向,可以刻画直线、平面、切线等几何对象.运用向量刻画几何对象和几何度量问题都是通过向量的代数运算来实现的.”本节课的例2就做到了数与形的结合,形式与本质的辨证统一.3.3教学过程生动活泼、妙趣横生
回味本章内容的章节导言作为开场白,给学生留下了一个悬念.在慢慢给出向量的应用时,学生才品味出这导言的深刻内涵,知道了向量与几何、向量与代数、向量与三角恒等变形的联系是有血有肉、不容分割的.金太阳新课标资源网wx.jtyjy.com
本堂课的设计还是具有比较先进的教学理念和教学模式,教会学生注重联系,领略思想;引导学生开阔视野,拓展思维.因此教学过程生动活泼,处处是一片愉悦的景象.同时教学语言妙趣横生,让学生更加喜欢参与进来.比如“看来同学们都很期待嘛”“那接下来我们就高姿态的看看向量是如何和三角紧密在一起的”“这次我们发现了新大陆啊!这个公式可是沟通第二章与第三章的桥梁.”等等都让学生获得对该学科学习的积极体验与情感.课后反思
4.1本课例满意之处
在执行新课改中,这一节诚然是对教师的一次严峻挑战,因为在老教材中没有出现过这节内容而且很少关注向量的真正应用.以往学生学了向量知识也很少懂得去联系或沟通其它分支的知识.本课例令我最满意之处就是用“回味”章节导言,牢牢抓住“向量是沟通代数、几何、三角函数的一种工具”这根主线,逐一向学生介绍向量的应用领域,让学生获得对该学科学习的积极体验与情感.本课例还令我满意的就是整节课的构思很注重数学各分支的联系,这样有利提高学生对数学整体的认识.特别是例3用向量方法推导出差角的余弦公式及简单应用,使本节课达到了应有的高潮,所以学生也对此评价很高.4.2课后再反思
平面向量及其运算与空间向量及其运算紧密联系,与数及其运算也直接相关,在其他学科(特别是物理)中也有广泛应用,而这节课却忽略了这些.比如,平面向量的实际背景及基本概念就来源于物理学中的一些实例,如果课堂上提到向量在物理方面的应用,这样就能使知识“前呼后应”、“融会贯通”.本节课还一个不足之处就是发现自己讲得比较多,其实关键应让学生去感悟与自己思考.还有,其实我们更应该教导学生怎么懂得去使用向量,尤其在哪些题目中使用向量的方法能使题目快速得以解答.正如课本的章节导言所说的那样:“向量是沟通与研究解决代数、几何、三角函数的一种有力工具.”因此引导学生如何去使用向量来解决众多的问题才是教本节《平面向量的应用举例》的真正目的!
平面向量的应用平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。一、用向量证明平面......
第二章平面向量复习课(一)一、教学目标1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。 2.了解平面向量基本定理.3.向量的加法的平行四......
1.2解三角形应用举例 第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,......
1.2解三角形应用举例 第三课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题2、通过综合训练强化学生的相应能力,让学生有效、积极......
刀豆文库小编为你整合推荐5篇高中数学《平面向量数量积》说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......