平面向量的应用由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“平面向量及其应用”。
平面向量的应用
平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。
一、用向量证明平面几何定理
例1.用向量法证明:直径所对的圆周角是直角。
已知:如图1,AB是⊙O的直径,点P是⊙O上任一点(不与A、B重合),求证:∠APB=90°。
证明:联结OP,设向量OAa,OPb,则OBa且PAOAOPab,PBOBOPab PAPBb2a2|b|2|a|20
PAPB,即∠APB=90°。
二、用向量求三角函数值
例2.求值:cos图
1解:如图2,将边长为1的正七边形ABCDEFO放进直角坐标系中,则OA(1,0),
224466AB(cos,sin),BC(cos,sin),CD(cos,sin),777777 8810101212DE(cos,sin),EF(cos,sin),FO(cos,sin)777777246coscos 777
又OAABBCCDDEEFFO0
图
21cos24681012coscoscoscoscos0 777777
86104122cos,coscos,coscos又cos 777777
24612(coscoscos)0777 2461coscoscos7772
三、用向量证明不等式
222例3.证明不等式(a1b1a2b2)2(a1a2)(bb212)
证明:设向量a(a1,a2),b(b1,b2),则|a|
与b的夹角为θ,cos
又|cos|
1222则(a1b1a2b2)2(a1a
22)(b1b2)22a1a2|b|b1b22,2,设aab|a||b|a1b1a2b2aa2122bb2122
当且仅当a、b共线时取等号。
四、用向量解物理题 例4.如图3所示,正六边形PABCDE的边长为b,有五个力PA、PB、PC、PD、PE作用于同一点P,求五个力的合力。
解:所求五个力的合力为PAPBPCPDPE,如图3所示,以PA、PE为边作平行四边形PAOE,则POPAPE,由正六边形的性质可知|PO||PA|b,且O点在PC上,以PB、PD为边作平行四边形PBFD,则PFPBPD,由正六边形的性质可知|PF|3b,且F点在PC的延长线上。
由正六边形的性质还可求得|PC|2b
故由向量的加法可知所求五个力的合力的大小为b2b3b6b,方向与PC的方向
相同。
图3
平面向量一、知识梳理:(1)本章要点梳理:1.向量加法的几何意义:起点相同时适用平行四边形法则(对角线),首尾相接适用“蛇形法则”,1特别注意:(ABAC) 表示△ABC的边BC的中线向量.向量减......
平面向量的综合应用 执教人: 执教人:易燕子 考纲要求: “从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使 考纲要求: 对数学基础知识的考查达到必要的深度......
平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具......
向量的有关结论1.相等向量的模一定相等,模相等的向量不一定是相等向量。2.相等向量一定是共线向量。3.零向量的方向是任意的。4.如果两个向量都等于第三个向量,则这两个向量一......
刀豆文库小编为你整合推荐3篇《平面向量》说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......