七年级下平行线的判定证明练习由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“平行线的判定练习”。
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()
2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。()
3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()
二.填空题:
1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。
2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。
3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。
4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)
∴ AB∥CD()
又∵∠1+∠2 =180(已知)
∴ AB∥EF()
∴ CD∥EF()
三.选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BCB.AB∥CD
C.EF∥BCD.AD∥EF
2.如图⑧,判定AB∥CE的理由是()
A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE
3.如图⑨,下列推理错误的是()
A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥b
C.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d
4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
A.①③B.②④C.①③④D.①②③④
四.完成推理,填写推理依据:
1.如图⑩ ∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()
∵AB∥CD,CD∥EF,∴ AB∥_______()
2.如图⑾ 填空:
(1)∵∠2=∠3(已知)
∴ AB__________()
(2)∵∠1=∠A(已知)
∴__________()
(3)∵∠1=∠D(已知)
∴__________()
(4)∵_______=∠F(已知)
∴AC∥DF()
3.填空。如图,∵AC⊥AB,BD⊥AB(已知)
∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______
∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°
∴_________()
五.证明题
1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。
3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
.已知:如图,求证:EC∥DF.,且
.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
D 图10 F
图
E B P
Q
D
C
B
A C
7.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求证:GH∥MN。
8.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。
9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。
七年级数学下《平行线的判定》教学反思通过上一节课的学习,学生对平行线的意义已有了较深的认识,但这种认识仅是直观的、感性的认识,而要来说明两直线平行,只有两个途径:平行线的......
七年级下 5.2.2平行线的判定一. 【内容和内容解析】判定定理1:同位角相等,两直线平行 判定定理2:内错角相等,两直线平行 判定定理3:同旁内角互补,两直线平行平行线的判定是本章的......
田野教育集团一对一辅导中心证明题练习1 如图所示,若∠1=52°,问∠C为多少度时,能使直线AB∥CD? 2 如图所示,∠1=45°,∠2=135°,l1∥l2吗?为什么?3 如图所示,∠1=120°,∠2=60°,问直线a......
练习1、已知,如图AB∥CD,直线EF分别截AB、CD于点M、N,MG、NH分别是∠EMB与 ∠END的平分线,试说明MG∥NH.。 证明:∵AB∥CD(已知),∴________=________().∵MG平分∠EMB(已知),∴________......
1.2平行线的判定一、课内同步训练1.如图所示,已知∠B=50°,∠C=50°,B、O、A在一条直线上,OM平分∠AOC,• 则OM∥BC,理由如下:∵∠COA=∠B+∠C(_________),又∵∠B=50°,∠C=50°(______......