构造函数法证明导数不等式的八种方法由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“导数证明不等式方法”。
导数专题:构造函数法证明不等式的八种方法
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。以下介绍构造函数法证明不等式的八种方法:
1、移项法构造函数 【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x x
12、作差法构造函数证明 【例2】已知函数f(x)
3、换元法构造函数证明
【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(4、从条件特征入手构造函数证明
【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b)
5、主元法构造函数
1223xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x23的图象的下方;
1111)23 都成立.nnn1x)x,g(x)xlnx 例.(全国)已知函数f(x)ln((1)求函数f(x)的最大值;
(2)设0ab,证明 :0g(a)g(b)2g(6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2.212x 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x
7.对数法构造函数(选用于幂指数函数不等式)例:证明当x0时,(1x)
8.构造形似函数
例:证明当bae,证明abba
【思维挑战】
1、(2007年,安徽卷)设a0,f(x)x1lnx2alnx
22求证:当x1时,恒有xlnx2alnx1,11xe1x22、(2007年,安徽卷)已知定义在正实数集上的函数
f(x)
52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,求证:f(x)g(x)
22xb,求证:对任意的正数a、b,恒有lnalnb1.1xa3、已知函数f(x)ln(1x)
4、(2007年,陕西卷)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a
()
(A)af(b)≤bf(a)(C)af(a)≤f(b)
(B)bf(a)≤af(b)(D)bf(b)≤f(a)
导数之构造函数法证明不等式1、移项法构造函数 【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有1【解】f(x)1ln(x1)x x11x1 x1x1∴当1x0时,f(x)0,即f(x)在x(1,0)上为增函数当x0时,f......
构造函数法证明不等式的八种方法利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。解题技巧是构造辅......
导数证明不等式构造函数法类别1、移项法构造函数1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:当x......
构造函数证明不等式的八种方法一、移项法构造函数例:1、已知函数f(x)ln(x1)x,求证:当x1时,但有12、已知函数f(x)aex1ln(x1)x 1x12x (1)若f(x)在R上为增函数,求a的取值范围。2(2)若a=1......
构造函数,结合导数证明不等式摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘隐......