对构造函数法证明不等式的再研究由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“构造函数法证明不等式”。
龙源期刊网 http://.cn
对构造函数法证明不等式的再研究
作者:时英雄
来源:《理科考试研究·高中》2013年第10期
某刊一文阐述了构造法证明不等式的九个模型,笔者深受启发,对其中作者介绍的构造函数模型进行了挖掘,着重对构造函数模型,利用函数的有关性质解决不等式问题进行了再研究,以供大家参考。
构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等......
构造法证明函数不等式1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.2、解题技巧是构造辅助函数......
构造函数法证明不等式一、构造分式函数,利用分式函数的单调性证明不等式【例1】证明不等式:|a||b||ab|1|a||b|≥1|ab|证明:构造函数f(x)=x1x (x≥0)则f(x)=x1x=1-11x在0,上单调......
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化......
构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l......