证明公理3的推论3由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“公理3的推论3的证明”。
证明公理3的推论3
公理3的内容是:经过不在同一直线上的三个点,有且只有一个平面。
公理3的推论3是:两条平行的直线确定一个平面。
所有的推论是由相应的公理证明的。
证明:
设两直线l和m互相平行,取l上两个点A和B,取m上两个点C和D,显然任意三点都不共线,否则l和m将会相交,与两直线平行矛盾,根据公理3,知道
过A、C、D有且只有一个平面,设为平面α;过B、C、D有且只有一个平面,设为平面β;
假设两平面α和β不重合,则B在α外,在同一平面内,永不相交的两条直线叫平行线,所以在α内过A且与CD平行的直线有且只有一条,不妨设为AE,此时,AB和AE都与CD平行,与“过直线外一点与此直线平行的直线有且只有一条“矛盾,所以D也在α内,此时α和β重合,即α和β是同一个平面,即两条平行的直线确定一个平面。
2公理3的内容是:经过不在同一直线上的三个点,有且只有一个平面。
公理3的推论3是:两条平行的直线确定一个平面。
所有的推论是由相应的公理证明的。
证明:
设两直线l和m互相平行,取l上两个点A和B,取m上两个点C和D,显然任意三点都不共线,否则l和m将会相交,与两直线平行矛盾,根据公理3,知道
过A、C、D有且只有一个平面,设为平面α;过B、C、D有且只有一个平面,设为平面β;
假设两平面α和β不重合,则B在α外,在同一平面内,永不相交的两条直线叫平行线,所以在α内过A且与CD平行的直线有且只有一条,不妨设为AE,此时,AB和AE都与CD平行,与“过直线外一点与此直线平行的直线有且只有一条”矛盾,所以D也在α内,此时α和β重合,即α和β是同一个平面,即两条平行的直线确定一个平面。
两点定一条直线
三点(不直线)定一个平面
两条平行的直线中其中一条直线可以确定2个点
另一条中找随便一个点,这个点在第一条直线外
所以不在一直线上的三个点可确定一个平面
存在性:
在每一条直线上都任意取一点(不是交点),不在同一直线上的三个点有一个平面(公理3)。
唯一性:
不在同一直线上的三个点只有一个平面(公理3)。
综上所述,两条相交的直线确定一个平面。
公理3的内容是:经过不在同一直线上的三个点,有且只有一个平面。公理3的推论3是:两条平行的直线确定一个平面。所有的推论是由相应的公理证明的。证明:设两直线l和m互相平行,取l上......
证明公理三的推论三1.平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、p来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体......
第一次课:证明及相关公理、定理、推论一、考点、热点回顾1、《证明(一)》知识点回顾:全等三角形的四个公理和一个推论公理三遍对应相等的两个三角形全等。(SSS)公理两边及其夹角......
公理与定理、推断的区别公理:是不能被证明但确实是正确的结论,是客观规律,比如两点之间线段最短。定理:是在一定条件下,由公理推导证明出来的正确的结论。推论:是由公理或定理推出......
十大人性公理的应用和推论 ——灵遁者上一章,我们用“公理”的形式总结了关于人性的10条认识。其实我在一开始就说了,此“公理”非数学概念的公理。只是说,我们要相信,虽然研究......