第1篇:鸡兔同笼问题说课稿
鸡兔同笼问题说课稿
鸡兔同笼,是中国古代著名典型趣题之一,小编收集了鸡兔同笼问题说课稿,欢迎阅读。
一、说教材
《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识 。
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在古代数学名著《孙子算经》。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。本课的教学与其它解决问题的课的区别在于,要把数学思想方法贯穿始终,为学生的终身发展奠定基础。
编排特点:
1. 注重彰显数学的文化价值,激发学生的学习兴趣。
2. 注重体现解决“鸡兔同笼”问题的不同思路和方法。
教材从数据较小的问题入手,让学生尝试解决。体现了学生从猜测到用“假设法”和列方程的方法解决问题的探究过程,同时也表达了解决“鸡兔同笼”问题的不同思路和方法。同时感受古人巧妙的解题思路。
3. 拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。
二、说学生
鸡兔同笼”问题,思维难度大,学生难以理解,特别是对于那些智力水平属于中下的学生来说更是不易。但是有一些学生在课外书中或在奥数班里已经学习了相关的内容。因此,教学这一内容时,学生的程度会参差不齐,而一部分学生对于解方程的基本功比较差,有一定难度。三班的学生思维不够灵活,学习起来会有难度,四班的`学生思维活跃,敢想,但很多学生不敢说,有一定的小组合组经验和合作能力,教学效果会好于三班。
三、说教学目标
基于以上认识,我确定本课的教学目标为:
1、学生初步认识“鸡兔同笼”的数学趣题,感受古代数学问题的趣味性,学习我国传统的数学文化。
2、尝试用不同的方法解决“鸡兔同笼”问题,并能解决与之有关的实际问题。
3、在解决问题的过程中培养学生的逻辑思维能力。
教学重点:尝试用不同的方法解决“鸡兔同笼”问题,并体会各种方法解决此问题的优劣。
教学难点:在解决问题的过程中培养学生的逻辑思维能力。
四、说教法与学法。
我本着“让学生经历猜想、实验、推理等数学探索的过程”的目的,坚持“学生是学习的主人,教师是学生学习的指导者”的原则,采用学生独立思考、小组交流、全班交流的方法,并且给学生留有充足的时间和空间,以学生的学为主导。这也是我们的科研课题“发展性课堂教学手段研究”所要求的留有空白和师生对话所要求的。
五、说教学流程。
第一环节:创设情境,激趣导入
利用课件,从《孙子算经》导入课题。目的是为了给数学课堂带来了浓厚的数学文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
第二环节:学生尝试探究
出示例1,从简单的问题入手,引导学生分析问题:从这个题目中你了解到什么信息?
学生独立思考,小组交流,教师巡视指导,给学生留有充足的时间进行思考、交流。
第三环节;师生互动,讨论交流
教师首先要充分预设学生在课堂学习中的种种情况,真正了解学生的认知基础,学生对学习内容的可接受性,学生的思维方式及学习习惯,分析可能产生的差异。根据两次的课堂教学实践,我对学生可能出现的情况做了6种解决问题方法的预设。
课堂中学生的生成是宝贵的资源,教师要关注学生的生成,根据学生的思考来研究问题,真正做到以学生的问题导学,以学生为主。
解答《孙子算经》的原题,让学生在解题过程中感受假设法和列方程的方法带有普遍性,并让学生选择自己喜欢的方法来解决问题。让学生阅读文本,了解古人解决此问题的方法。
第四环节:联系生活,应用练习。目的是让学感受《鸡兔同笼》问题在生活中的应用。
第五环节:总结归纳,畅谈收获
教学中教师要适时地恰当地给予学生评价,课堂教学中关注学生的思考,如在学生能够自己想到一种解决问题的方法时,教师要及时地给予激励性的评价,,以鼓励学生积极思考。
六、说板书设计:板书以假设法和列方程为主,凸显两种解题方法。
通过本次的网络研讨活动,使我对数学广角的教学有了新的更深层次的认识:
1、“数学广角”不等同于“奥数”。
“数学广角”中的内容,大部分都是 “奥数”教材中才出现的内容,比如“鸡兔同笼问题”、“植树问题”、“抽屉原理问题”等等。但是数学广角不等于奥数,它的目的是想通过这些简单的事例渗透一些基本的数学思想方法,“让学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。”
2、“数学广角”要面对全体学生。
数学广角”中的内容相思维难度要大一些,学生难以理解,特别是对于那些智力水平属于中下的学生来说更是不易。在学习“数学广角”这部分内容时,要跟学习其它内容一样面向全体学生,使绝大多数的学生通过教学都能够理解和掌握一些基本的数学思想方法。
3、在教学中教师要引导学生经历猜想、实验、推理等探索过程,同时在学生遇到困难时给予必要的提醒、点拨,激励学生克服困难,战胜困难,使学生在探究的过程中不断思考,不断感悟,初步掌握“数学广角”内容所蕴含的数学思想和方法
第2篇:鸡兔同笼问题教案及说课稿
四年级下册数学《鸡兔同笼》教案
田庄中心校耿庄小学 王 俊
教学内容:
人教版四年级下册数学第九单元《鸡兔同笼》。教学目标:
1、了解“鸡兔同笼”问题的结构特点,了解猜测法、画图法,掌握用列表法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、体会其在日常生活中的应用及价值,体会解题策略的多样性,感受数学思想文化的熏陶。
3、感受古代数学问题的趣味性,提高学习数学的兴趣,增强民族自豪感。教学重点:
用不同的思路和方法解决“鸡兔同笼”问题。教学难点:
用假设法解决“鸡兔同笼”问题。教具准备:
PPT课件 教学过程:
一、引学
(一)激趣导入课题;
(二)出示学习目标;
(三)简要介绍鸡兔同笼问题;
二、引探
(一)出示自学提示
(一)(5mins)
1、读例1,从中能获得哪些数学信息(已知条件和数量关系)?
2、猜一猜,鸡和兔各有几只?(1)那么我们应该怎样猜?
(2)如果猜得的脚数等于26只、大于26只、小于26只,分别说明了什么?
(3)又该如何进行调整呢?
3、画一画,看一看鸡、兔各有几只?
4、完成课本P104例1的表格。
(二)汇报展示自学成果
1、交流反馈获取的数学信息:已知条件和数量关系;
2、猜测法思路汇报;
3、画图法成果展示;
4、小组合作探究列表法;
(三)出示自学提示
(二),小组合作探究假设法。(5mins)
1、根据表格完成填空。
2、整理思路,列式计算。
(四)汇报展示自学成果,呈现假设法解题过程。
三、引练
(一)《孙子算经》中的鸡兔同笼问题。
(二)课本105页做一做。
1、日本的“龟鹤算”问题。(第一题)
2、“鸡”和“兔”的“脚数”相差不是2。(第二题)
四、引展
课本 P105阅读资料—抬脚法(古称砍足法)
五、本课小结:解决 “鸡兔同笼”注意事项。
六、布置作业
(一)完成课本P106—P107练习二十四;
(二)完成“鸡兔同笼”类问题专项强化练习题。
四年级下册数学《鸡兔同笼》说课稿
田庄中心校耿庄小学
王 俊
尊敬的各位领导,亲爱的各位同仁:
大家好!俗话说:“台上一分钟,台下十年功”,我深知我的功夫还很不到家,欢迎大家批评斧正。下面我就《鸡兔同笼》这节课,向大家作一简要汇报。
一、说教材分析
(一)说教学内容
“鸡兔同笼”问题是我国古代著名的数学趣题,本节课所讲的《鸡兔同笼》来源于人教版四年级数学下册第九单元数学广角。
(二)说教材编排特点
教材借助古代课堂的情景对《孙子算经》中记载的“鸡兔同笼”原题进行了介绍,激发学生解决问题的兴趣。由于“鸡兔同笼”原题的数据较大,不便于学生进行探究,所以教材化繁就简,先在例1中安排一道数据较小的“鸡兔同笼”问题让学生探索解决的方法。
在分析解答部分,分别猜测鸡、兔各有多少只,然后验证脚的只数是否对应,通过不断的猜测、尝试最终找到答案,例1的表格可帮助学生按顺序探索答案,虽然也可以解决问题,但当数据较大时,过程繁琐。因此,教材主要呈现了最典型的“假设法”。
(三)说教学目标
1、了解“鸡兔同笼”问题的结构特点,了解猜测法、画图法,掌握用列表法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、体会其在日常生活中的应用及价值,体会解题策略的多样性,感受数学思想文化的熏陶。
3、感受古代数学问题的趣味性,提高学习数学的兴趣,增强民族自豪感。
(四)说教学重、难点
1、用不同的思路和方法解决“鸡兔同笼”问题。
2、用假设法解决“鸡兔同笼”问题。
二、说学情分析
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。
三、说教法、学法
教法:用“四引”教学模式,利用PPT课件引导学生探究发现、小组合作交流、画图分析、归纳推理等方法,进行尝试、探究、自主的学习,使学生在学习知识探索的过程中体验学习的乐趣,感受数学的价值。
学法:引导学生运用动手操作、观察发现、自主探究、合作交流等方法进行学习。让学生主动参与到学习的过程中,让每个学生都动口、动手、动脑。老师成为学生的学习伙伴,与学生一起体验成功的喜悦,努力创造一个轻松,高效的学习氛围。
四、说设计理念
鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。而且在现实生活中,人们根本不会把鸡兔关在同一个笼子里,就算是出现了这样的情况,也不会通过去数头和脚来计算鸡兔的数量,那为什么这样的一个不可能发生的问题到底有什么魅力,使得那么多的人乐此不疲地去解决,经过1500年的洗礼流传至今呢?它经久不衰的魅力究竟在哪儿呢?教学“鸡兔同笼”问题究竟能给孩子带来什么? 事实上,“鸡兔同笼”展现的是这样一类问题:把有联系的两种事物放在一起描述,已知这两种事物的总数和关于这两种事物本身特有的另一个数量,求这两种事物各自的数量。这类问题就是一个具有普遍性的问题。同时,这个问题中蕴含着化繁为简的化归思想、假设思想、数形结合思想、方程思想、建模思想等多种数学思想方法。
因为“鸡兔同笼”问题的趣味性和拓展的广泛性,也因为其解题方法的代表性,因此,使得这类问题频频出现在当今的各种小学数学竞赛中或各种奥数读本里。“鸡兔同笼”教学的目的,并不仅仅是能够求解一个“鸡兔同笼”问题,而是能够求解一类“鸡兔同笼”问题,而是能够探究出解决该类问题的多种方法。否则,怎样体现新课程理念?又怎样体现课堂教学较之奥数辅导的优越性?新课程理念的核心是问题的探究,是探究的过程,是探究的过程中的创新,从而具有数学学习的情感、态度和价值观,而传统教学和奥数辅导所缺乏的正是这些。因此,借助“鸡兔同笼”的教学机会,就应该展示出这些解题方法。也只有这些方法都展示出来,才能显示其千秋,比较其优劣。也许有的方法并不简便,也并不易于接受,但是各种方法的数学内涵是不能相互替代的。
学生怎么学,取决于教师怎么教,一般来说,就是教师出示例题,然后让学生自主尝试解答。接着是对各种方法进行展示交流,到最后要么是各种方法的大杂烩,方法说完也就下课了;要么就是狠抓重点假设法,加之假设法的解题速度最快,到最终学生只愿意用假设法。然而实际上学生在解说假设法时,是没多少人听懂的,同时,解说的学生“知其然,不知其所以然“,因此,一节课下来,学生会呈现三种不同的状态,豁然开朗的是那些一点就透的,懵懵懂懂的是那些“比着葫芦画瓢“,分不清求出来的是鸡还是兔的,一窍不通的还是那些原来不会现在依然不会的。我也不能免俗,也曾亲身经历过这样的课堂。失败的根本原因是学生对解题,推理的思路和过程缺乏真实的体验,方法虽多,却不能把握其最核心、最基本的数量关系—4×()+2×()=26。其实,不论是,猜测法、画图法,还是列表法、假设法都可以在这个模型中找到影子。因此“猜想、验证、调整的策略”方是这节课的灵魂,学《鸡兔同笼》的根本目的就是要掌握这种解决问题的本领—解决问题的策略。因此,我在教材列表猜测法和假设法的基础上,补充了直观和易操作的画图法,在课堂小结上着重强调了解决这类问题的注意事项。
五、说教学过程
教学过程上,按照“四引”模式的要求,通过两个自学提示,引导学生通过小组合作,自我探究,去发现解决问题的策略,通过汇报、展示、交流去加深对这些方法的理解和体验,在练习中巩固、深化理解,完善解题策略,在拓展运用中感受其趣味性。
六、说板书设计
板书设计力求简单明了,既体现主要内容,又要高度概括,条理清晰,呈现解题思路。
七、说教学反思
这段时间,对于这节课,我研究了大量的教学设计,说课稿以及有关这节课的一些教学探究型的文章,也搜集了不少图片等素材,也有看的越多越不知如何入手的体验,面对纷繁复杂的设计、练习、素材及教法,我按照自己的理解,设计了课件及教案,然“当局者迷,旁观者清”,加之受自己的教学组织能力和水平所限,还有很多不足之处,还望在座的各位同仁能一起探讨和不吝赐教,以期有所进步。我想,这大概也就是我们聚在一起磨课的意义所在。
2018年7月17日
第3篇:鸡兔同笼问题说课稿(精选5篇)
鸡兔同笼问题说课稿(精选5篇)
在教学工作者实际的教学活动中,时常会需要准备好说课稿,说课稿可以帮助我们提高教学效果。写说课稿需要注意哪些格式呢?下面是小编精心整理的鸡兔同笼问题说课稿,希望能够帮助到大家。
鸡兔同笼问题说课稿 1
一、说教材
《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识 。
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在古代数学名著《孙子算经》。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。本课的教学与其它解决问题的课的区别在于,要把数学思想方法贯穿始终,为学生的终身发展奠定基础。
编排特点:
1. 注重彰显数学的文化价值,激发学生的学习兴趣。
2. 注重体现解决“鸡兔
第4篇:鸡兔同笼说课稿
数学广角——“鸡兔同笼”说课稿
教材分析
“鸡兔同笼”师我国民间广为流传的古代数学趣题,最早出现再《孙子算经》中,教材一方面意在 让学生感受丰富的古代数学文化,另一方面在解决问题的过程中体验解决这类问题的不同方法和策略。通过经历猜测,列表,假设,推理等学习活动,培养学生初步的探究能力和逻辑推理能力。
学情分析
对于四年级学生而言,学生的逻辑推理能力还不是很强,自主探究解决问题困难较大,因此,教学中教师要充分发挥引领作用,通过情景感受,化繁为简,猜测,列表,画图等方法帮助学生参与探究活动,使学生借助展开想象,促进数学思考,找到问题解决的方法,有个别学生通过“奥数”学习已经接触过鸡兔同笼问题,但多是机械记忆了一些解题的模式,并不理解其中的数量关系,还有大部分学生没有接触过这样的问题,学习起来会有一定的难度
第5篇:鸡兔同笼说课稿
鸡兔同笼说课稿
说教材:
鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。从读懂教材这一角度来看,在本课教材中呈现了2种解决问题的方法,都是通过猜想举例、列表法、假设法来解决问题。其中,第一种是列表法,第二种是假设法。
在导读单上我设计了三种不同的格式让他们用不同的方法来解决问题,最后还设计了一个你还有其他方法吗?课堂上学生可能会想出画图的方法等。但需要注意的是,教材选“鸡兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略——假设法。而且在后面相应的练习、复习中,相关的题目也都让他们尽量用假设法来解决问题,能够让学生较好地运用这种基本的解题策略解题。这一
第6篇:鸡兔同笼问题_教案设计
《鸡兔同笼》教学设计
执教:薛敏
教学内容:人教版六年级上册数学广角--鸡兔同笼
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会代数方法的一般性。
3、解决“鸡兔同笼”问题可用猜测、列表、假设或者方程解等方法。4.在解决问题的过程中,培养学生的逻辑推理能力。让学生体会到数学问题在日常生活中的应用。教学重点:
探究用不同方法解决鸡兔同笼问题,会用“假设法”方程等方法解题。教学难点:
明确此类数学问题的解题思路中的算理。教学用具:电子白板 教学过程
一、开门见山,导入新课:
同学们,今天,我们一起来研究一个有趣的问题,请看屏幕。
二、展示情境,探究新知
1、出示鸡兔同笼问题:今有鸡兔同笼,从上面数上有8个头,从下面数,有26只脚。鸡和兔各有几只?
提问
第7篇:数学《鸡兔同笼》说课稿
数学《鸡兔同笼》说课稿
一、说教材
【地位和作用】
思考——人教版实验教材增设数学广角这一单元的目的是什么?鸡兔同笼问题设置在数学广角中,其教学与常规课有什么不同?
分析——《教学用书》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,“鸡兔同笼”问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。本课的教学与常规课相比,区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,为学生的终身发展奠定基础。本课时中,学生可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。