第1篇:七年级数学《具有相反意义的量》教学设计
七年级数学《具有相反意义的量》教学设计范文
作为一无名无私奉献的教育工作者,常常需要准备教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么教学设计应该怎么写才合适呢?下面是小编帮大家整理的七年级数学《具有相反意义的量》教学设计范文,欢迎阅读,希望大家能够喜欢。
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。
存折上,银行是怎么区分存款和取款的?
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米。
教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。把正数和零称为非负数。
故事:虚伪的零下。
在日常生活和生产中大量存在着具有相反意义的量,引入负数完全是实际的需要。
历史上,负数曾经到非议,直到16世纪,欧洲大多数的数学家都还不承认负数,他们觉得“0就是什么也没有”,还有什么东西能够比“什么也没有”还小呢?德国数学家史蒂芬说:“负数是虚伪的零下”,仅是些记号而已。法国数学家帕斯卡则认为,从0减去4是胡说八道。
最早发现负数的是我们中国人,我国的“孟子”一书中就有“邻国之民不加少,寡人之民不加多”其中“加少”就是减少,即加上了负数的意思。秦汉时的古代算经“九章算术”的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。三国时魏国人刘徽在“九章算术”的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展作出的一项重大贡献,我们应该引以自豪!另外,印度数学家在公元625年(比我国迟几百年),婆罗摩捷多已经提出了负数的概念。他用“财产”表示正数,用“欠债表示负数,并用它们解释正负数的加减法运算。
0.只表示没有吗?
1.空罐中的`金币数量;
2.温度中的0℃;
3.海平面的高度;
4.标准水位;
5.身高比较的基准;
6.正数和负数的界点;
……0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有。
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。把正整数、负整数和零统称为整数,正分数、负分数统称为分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、应用迁移,巩固提高
例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+,0.33,0,-,-91、判断下列各题是否是相反意义的量,(1)上升和下降。(2)运进货物100吨和下降100米。(3)向东走10米与向西走1米。
2、(1)收入10万元,记作:+10万元,支出1000元记作______。(2)水位升高1.2米,记作+1.2米,那么-3.0米表示________。
3、下列说法正确的是
A正数、零、负数统称为有理数。B分数、整数统称为有理数。
C正有理数、负有理数统称为有理数。D以上都不对。
4、已知:1,、、0,-37、0.2,%,-0.01,-20%,其中整数有______________,负分数有__________________。
5、北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________下午2:00。
课堂练习:课本P5练习
四、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、课后作业:课本P5习题1.1A第1、2、3、4、5题。
第2篇:七年级数学具有相反意义的量教学设计
七年级数学具有相反意义的量教学设计
作为一无名无私奉献的教育工作者,可能需要进行教学设计编写工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么什么样的教学设计才是好的呢?下面是小编帮大家整理的七年级数学具有相反意义的量教学设计,希望能够帮助到大家。
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的`量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。
存折上,银行是怎么区分存款和取款的?
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家、甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……、其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”、如今这种方法在记账的时候还使用、所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;
教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
把正数和零称为非负数
故事:虚伪的零下
在日常生活和生产中大量存在着具有相反意义的量,引入负数完全是实际的需要。
历史上,负数曾经到非议,直到16世纪,欧洲大多数的数学家都还不承认负数,他们觉得“0就是什么也没有”,还有什么东西能够比“什么也没有”还小呢?德国数学家史蒂芬说:“负数是虚伪的零下”,仅是些记号而已。法国数学家帕斯卡则认为,从0减去4是胡说八道。
最早发现负数的是我们中国人,我国的“孟子”一书中就有“邻国之民不加少,寡人之民不加多”其中“加少”就是减少,即加上了负数的意思。秦汉时的、古代算经“九章算术”的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。三国时魏国人刘徽在“九章算术”的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展作出的一项重大贡献,我们应该引以自豪!另外,印度数学家在公元625年(比我国迟几百年),婆罗摩捷多已经提出了负数的概念。他用“财产”表示正数,用“欠债表示负数,并用它们解释正负数的加减法运算。
0只表示没有吗?
1、空罐中的金币数量;
2、温度中的0℃;
3、海平面的高度;
4、标准水位;
5、身高比较的基准;
6、正数和负数的界点;
……0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有。
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。把正整数、负整数和零统称为整数,正分数、负分数统称为分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
四、课后作业:课本P5习题1、1A第1、2、3、4、5题。
第3篇:1.1 具有相反意义的量教学设计
1.1具有相反意义的量
教学目标:
1.通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量;
2.理解有理数的意义,体会有理数应用的广泛性.重点、难点:
1.重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类.2.难点:对负数的理解以及正确地对有理数进行分类.教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,…… 为了表示“没有人”、“没有羊”、……,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小
第4篇:《具有相反意义的量》教案
《具有相反意义的量》教案
作为一名专为他人授业解惑的人民教师,时常需要用到教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编帮大家整理的《具有相反意义的量》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《具有相反意义的量》教案 1
教学内容:
第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。
教学目标:
1。在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。
2。感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。
教学重点:
会用正、负数表示相反意义的量。
教学难点:
会用正、负数解决生活中的实际问题。
教具准备:
多媒体课件
教学方法:
合作交流、师生互动
教学过程:
一、游戏激趣
教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》
第5篇:《具有相反意义的量》教案
《具有相反意义的量》教案
作为一名专为他人授业解惑的人民教师,时常需要用到教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编帮大家整理的《具有相反意义的量》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
学习目标:
1、能应用正负数表示生活中具有相反意义的量。
2、能说出有理数的意义,能正确对有理数进行分类。
重难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
学习时数:
1课时
学习过程:
一、快乐自学(8分钟)
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量
第6篇:《具有相反意义的量》教案
《具有相反意义的量》教案
学习目标:
1、能应用正负数表示生活中具有相反意义的量。
2、能说出有理数的意义,能正确对有理数进行分类。
重难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
学习时数: 1课时
学习过程:
一、快乐自学(8分钟)
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
二、合作探究
1、某地2月18日凌晨1点的.温度是0℃,凌晨4点的温度是-2℃,哪个时刻温度低?
2、吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低?
3、通常把水结冰时的温度规
第7篇:具有相反意义的量数学教案
具有相反意义的量数学教案
教学内容:§1.1 具有相反意义的量
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
引导学生回忆:小学里已经学过哪些类型的数?自然数、分数和零
二、合作交流,解读探究
1、相反意义的量
相反意义的量,它们不但意义相反,而且还要表示一定的数量。
如:高出海平面3000m与低于海平面200m,