1.1具有相反意义的量新版教案_具有相反意义的量教案

教案模板 时间:2020-02-29 05:19:20 收藏本文下载本文
【www.daodoc.com - 教案模板】

1.1具有相反意义的量新版教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“具有相反意义的量教案”。

第一章 有理数

一、全章概况:

本章主要分两部分:有理数的认识,有理数的运算。

二、本章教学目标

1、知识与技能

(1)理解有理数的有关概念及其分类。

(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。

(4)能运用有理数的有关知识解决一些简单的实际问题。

2、过程与方法

(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。

(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。

3、情感、态度与价值观

(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。

(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。

三、本章重点难点:

1、重点:有理数的运算。

2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。

四、本章教学要求

认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。

- 1 -

无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。

在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。

注意教学反思。关注学生的学习过程,及时调整教学,促进师生共同改进。

1.1 具有相反意义的量

教学目标:

1、知识与技能

(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。(2)理解有理数的意义,体会有理数应用的广泛性。

2、过程与方法

通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

重点、难点:

1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

2、难点:对负数的理解以及正确地对有理数进行分类。教学过程:

一、创设情景,导入新课

大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数? 学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

为了表示一个人、两只手、……,我们用到整数1,2,…… 为了表示“没有人”、“没有羊”、……,我们要用到0.

但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

- 2 -

二、合作交流,解读探究

1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。

存折上,银行是怎么区分存款和取款的? 同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢? 待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米; 教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。

强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

把正数和零称为非负数

0只表示没有吗?

1.空罐中的金币数量;2.温度中的0℃;3.海平面的高度;4.标准水位;- 3 -

5.身高比较的基准;6.正数和负数的界点;

……0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.2、给出新的整数、分数概念

引进负数后,数的范围扩大了。把正整数、负整数和零统称为整数,正分数、负分数统称为分数。

3、给出有理数概念 整数和分数统称为有理数。

4、有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充。

教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

1、2、3......正整数如:整数零负整数如:-

1、-

2、-3...... 有理数12正分数:如:,,5.2,......23分数,13负分数,如:-,-3.5,-,......57正有理数有理数零

负有理数

三、应用迁移,巩固提高

例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+

317,0.33,0,-,-9

56练1 判断下列各题是否是相反意义的量,(1)上升和下降(2)运进货物100吨和下降100米,(3)- 4 -

向东走10米与向西走1米(1)收入10万元,记作:+10万元,支出1000元记作______.(2)水位升高1.2米,记作+1.2米,那么-3.0米表示_________.3 下列说法正确的是()

A 正数、零、负数统称为有理数。

B 分数、整数统称为有理数。C 正有理数、负有理数统称为有理数。D 以上都不对已知:1,2、23、0,-

37、0.2,35%,-0.01,-20%,1,32,其中整数有4325______________, 负分数有__________________.5 北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________下午2:00 课堂练习:课本P5练习

四、总结反思

引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

五、课后作业:课本P5习题1.1A第1、2、3、4、5题。

教学后记

- 5 -

《具有相反意义的量》教案

《具有相反意义的量》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编帮大家整理的《具......

《具有相反意义的量》教案

刀豆文库小编为你整合推荐7篇《具有相反意义的量》教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《具有相反意义的量》教案

《具有相反意义的量》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编帮大家整理的《具......

《具有相反意义的量》教案

《具有相反意义的量》教案学习目标:1、能应用正负数表示生活中具有相反意义的量。2、能说出有理数的意义,能正确对有理数进行分类。重难点:1、重点:正数、负数有意义,有理数的意......

具有相反意义的量数学教案

具有相反意义的量数学教案教学内容:§1.1 具有相反意义的量教学目标:1、知识与技能(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。(2)理解有......

下载1.1具有相反意义的量新版教案word格式文档
下载1.1具有相反意义的量新版教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文