第1篇:直线的两点式方程教学设计
3.2.2
直线的两点式方程
三维目标
1、知识与技能
(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法
让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。教学重点、难点:
1、重点:直线方程两点式。
2、难点:两点式推导过程的理解。教学过程:
一、复习准备:
1. 写出下列直线的点斜式、斜截式方程,并求直线在y轴上的截距.①经过点A(-2,3),斜率是-1;②经过点B(-3,0),斜率是0;③经过点C2,2,倾斜角是60;
二、讲授新课:
1.直线两点式方程的教学:
① 探讨:已知直线l经过p1(x1,y1),p2(x2,y2)(其中x1x2,y1y2)两点,如何求直线的点斜式方程?
yy1y2y1(xx1)x2x1两点式方程:由上述知, 经过p1(x1,y1),p2(x2,y2)(其中x1x2,y1y2)两点的直线方程为yy1xx⑴,我们称⑴为直线的两点式方程,简称两点式.y2y1x2x1(x1,x2),P2(x2,y2)中有x1若点P12.举例
x2,或y1y2,此时这两点的直线方程是什么?
例1:求过A(2,1),B(3,3)两点的直线的两点式方程,并转化成点斜式.练习:教材P97面1题 例2:已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0
求l的方程
② 当直线l不经过原点时,其方程可以化为其中
直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b.xy1 ⑵, 方程⑵称为直线的截距式方程,abx2x1x2③ 中点:线段AB的两端点坐标为A(x1,y1),B(x2,y2),则AB的中点M(x,y),其中
yy1y22例2:已知直线经过A(2,0),B(0,3)两点,则AB中点坐标为______,此直线截距式方程为______、与x轴y轴的截距分别为多少?
练习:教材P97面2题、3题
例
3、已知ABC的三个顶点是A(0,7)B(5,3)C(5,-3),求
(1)三边所在直线的方程;(2)中线AD所在直线的方程;(3)高AE所在直线的方程。3.小结:(1)、两点式.截距式.中点坐标.(2)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?
(3)要求一条直线的方程,必须知道多少个条件?
4.作业:《习案》第二十课时。.5.板书设计
直线的两点式方程
一. 复习准备
三。应用示例 二. 公式的教学
四。练习与小结
6.教学反思:本节课的内容学生学起来还是比较容易接受的,课后注意巩固与练习,部分太差的学生才用个别辅导。
第2篇:关于直线的两点式方程教学设计
关于直线的两点式方程教学设计
一、教学目标
1、知识与技能:(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法:让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的.特点。
3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。
二、教学重点、难点
1、 重点:直线方程两点式。2、难点:两点式推导过程的理解。
三、教学方法:
启发、引导、讨论.
四、教学过程
问 题 设计意图 师生活动
1、利用点斜式解答如下问题:
(1)已知直线 经过两点 ,求直线 的方程.
(2)已知两点 其中 ,求通过这两点的直线方程。 遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。 教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:
(1)
(2)
教师指出:当 时,方程可以写成
由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form).
2、若点 中有 ,或 ,此时这两点的直线方程是什么?
使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。 教师引导学生通过画图、观察和分析,发现当 时,直线与 轴垂直,所以直线方程为: ;当 时,直线与 轴垂直,直线方程为: 。
问 题 设计意图 师生活动
3、例3 教学
已知直线 与 轴的交点为A ,与 轴的交点为B ,其中 ,求直线 的方程。
使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。 教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线 的方程?那种方法更为简捷?然后由求出直线方程:
教师指出: 的几何意义和截距式方程的概念。
4、例4教学
已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。 让学生学会根据题目中所给的条件,选择恰当的直线方程解决问题。 教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC所在的直线方程和该边上中线所在直线方程。在此基础上,学生交流各自的作法,并进行比较。
第3篇:直线的两点式方程教案
直线的两点式方程教案
一、教学目标
1、知识与技能
(1)握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法
让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。
二、教学重点、难点:
1、重点:直线方程两点式。
2、难点:两点式推导过程的理解。
三、教学设想
问
题
1、利用点斜式解答如下问题:
(1)已知直线l经过两点P1(1,2),P2(3,5),求直线l的方程.(2)已知两点P1(x1,x2),P2(x2,y2)其中(x1x2,y1y2),求通过这两点的直线方程。
设计意图
遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识
第4篇:3.2.2直线的两点式与截距式方程(教学设计)
3.2.2 直线的两点式与截距式方程(复习设计)
教学目标
1、知识与技能
(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围.2、过程与方法
让学生掌握直线的两点式方程的推导过程,学会分析、比较,有特殊情况特殊处理的意识.3、情态与价值观
感受两点确定一条直线这一几何意义的代数转化,体验解析几何的代数美感.教学重点、难点:
1、重点:直线方程两点式。
2、难点:两点式推导过程的理解及截据式方程.教学过程
(一)复习回顾,新课导入
复习:已经学过的点斜式方程和斜截式方程及其特点
思考:已知直线经过两点P1(x1,y1),P2(x2,y2),(x1x2 ,y1y2),如何求出这两个点的直线方程呢?
生:经过一点,且已知斜率的直线,可以写出它的点斜式方程.可以先求出斜率,再
第5篇:高中直线的两点式方程教案
直线的两点式方程
一、教学目标
1、知识与技能:(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法 让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。
二、教学重点、难点
教学重点:掌握直线的两点式方程。
教学难点:直线的两点式方程的推导过程和理解它。
三、教具 :三角板。学具:三角尺。
四、教学过程
(一)复习导入
上节课我们学习了直线的点斜式方程,现在同学们利用点斜式解答如下问题:①已知直线l经过两点P1,2),P2(3,5),求直线l的方程.②已知两点1(其中(x1x2,y1y2),求通过这两点的直线方程。P1(
第6篇:3.2.2《直线的两点式方程》教案
3.2.2 直线的两点式方程
教学目标
1、知识与技能
(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法
让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。教学重点、难点:
1、重点:直线方程两点式。
2、难点:两点式推导过程的理解。教学过程:
一、复习准备:
1. 写出下列直线的点斜式、斜截式方程.①经过点A(-2,3),斜率是-1;②已知直线经过两点程.设计意图:遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。,求直线的方
二、讲授新课:
1.直线两点式方程的教学:
① 探讨
第7篇:两点确定直线方程公式是什么
点斜式:已知直线l的斜率是k,并且经过点P1(x1,y1)。
直线方程是y-y1=k(x-x1)。
但要注意两个特例:
a.当直线的斜率为0°时直线的方程是y=y1;
b.当直线的斜率为90°时,直线的斜率不存在,直线方程是x=x1。
扩展资料
两点式:已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2)。
直线方程是(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
也要注意两个特例:
A.当x1=x2时,直线方程是x=x1;
B.当y1=y2时,直线方程是y=y1。
斜截式:已知直线l在y轴上的截距为b,斜率为b。
直线方程为y=kx+b。
直线方程一般式斜率怎么求
直线方程的一般式:Ax+By+C=0(A≠0&&B≠0)【适用于所有直线】。
斜率是指一条直线与平面直角坐标系横轴正半轴方向
第8篇:《直线的点斜式方程》教学设计
《直线的点斜式方程》教学设计
《直线的点斜式方程》教学设计
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。数学网小编准备了 高一数学教学设计 ,供大家参考!
一、内容及其解析
1.内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课.学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线.本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线.
2.解析:直线方程属于解析几何的基础知识,是研究解析几何的开始.从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题.从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础.