第1篇:等腰三角形教学设计
提出问题,创设情境 活动
1、实践观察,认识等腰三角形: 把一张长方形的纸片对折,并剪下阴影部分(如教科书图12.3-1),再把它展开,得到一个什么图形?这个图形有什么特点?(学生动手剪纸,观察,讨论,教师在学生充分发表自己的想法基础上给出画图方法,并画出图形,介绍腰、底边、底角、顶角)
二、合作探究 活动
2、探索等腰三角形的性质
(1)、活动1 中剪出的等腰三角形是轴对称图形吗?把剪出的等腰三角形△ABC 沿折痕对折,找出 其中重合的线段和角。(学生动手折纸、观察,找出重合的线段和角,填写下列表格)。重合的线段 重合的角(2)、猜一猜等腰三角形有哪些性质。(学生根据重合的线段和重合的角,先独立思考等腰三角形有 哪些性质,然后小组内讨论交流自己的意见,形成最终结果。)(3)、等腰三角形的性质: A.等腰三角形的两个底角相等(简写成“等边对等角”). B.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).(教师总结每个小组的讨论意见,最终得出等腰三角形的性质,并板书在黑板上。)活动
3、等腰三角形的性质定理的证明。(学生在教师的引导下利用全等三角形的性质,根据对称性寻找辅助线的添加办法,学生分小组讨论 交流,得出证明过程,教师播放幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既 锻炼学生的发散思维能力,又可提高学生的表述水平。)活动
4、等腰三角形性质定理的运用(1)如果等腰三角形的顶角是30°,那么它的两个底角的度数是。(2)在△ABC中,AB=AC,∠BAC=90°AD是底边BC上的高,则∠B=、∠C=、∠BAD=、∠DAC= ,BD= =.(3)如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求:△ABC 各角的度数.
三、当堂训练
1、等腰三角形的一个角是36°,它的另外两个角是。
2、等腰三角形的一个角是110°,它的另外两个角是.3.如右图,在△ABC 中,AB=AD=DC,∠BAD=26°,求∠B 和∠C 的度数.
四、小结与作业
第2篇:等腰三角形教学设计
《等腰三角形》教学设计
[教学内容]:义务教育课程标准实验教科书(鲁教版)七年级数学上册第二章 第三节《等腰三角形》第一课时,课本49页~51页。[教材分析]:
分析教材:教材从具体到抽象,从感性到理性,从实践到理论,再用实践检验理论,层次分明,循序
本课时教学内容的地位和作用
本节是在探索了两个三角形全等的条件及轴对称性质的基础上进行的,进一步认识特殊的轴对称图形──等腰三角形,主要探索等腰三角形“等边对等角”和“等腰三角形的三线合一”的性质。本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是证明角相等、线段相等及两直线互相垂直的重要依据,具有承上启下的重要作用。
学情分析
学生小学接触过等腰三角形,对等腰三角形有初步的认识,前段时间探究过两个三角形全等的条件及轴对称的性质,比较习惯用三角形全等证明线段相等和角相等,一、教材依据
鲁教版七年级上册第二章 第三节
二、设计思想
本节内容在初中数学教学中起着比较重要的作用,我采取启发式、探究式以及讨论式的教学方法。通过学生动手操作、观察猜想、推理论证的方法,借助全等三角形为推理工具,来得出等腰三角形的三条性质。首先通过学生对等腰三角形的折叠操作,得出等腰三角形的性质1:等腰三角形是轴对称图形,在折叠过程中同时发现等腰三角形的性质2和性质3,性质2:“等边对等角“是今后证明两角相等常用方法之一,而性质3:等腰三角形的“三线合一”是今后证明两条线段相等、两个角相等及两条线段互相垂直的重要依据。我在教学过程中严格遵循学校“四部六环节”教学模式,体现活力新课堂的理念,通过多种方法改变学生的角色,听、说、读、写交互转换,培养学生主动学习的品质,充分进行赏识教育,培养孩子的自信心。
三、教学目标
1、知识与能力目标:
①掌握等腰三角形的3条性质
②运用等腰三角形的性质进行有关证明和计算。
2、过程与方法目标:
①让学生体验等腰三角形是一个轴对称性图形。
②经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力。
3、情感、态度、价值观目标:
培养学生小组合作意识,使学生理解转化的数学思想,培养学生变通的能力。
四、教学重点
等腰三角形的性质定理及其证明
五、教学难点
“三线合一”的理解及其应用
六、教学准备
自制等腰三角形纸片
七、教学过程
(一)、复习回顾,课前展示(1)等腰三角形的定义(2)等腰三角形的要素:
腰、底边、顶角、底角(3)轴对称图形的定义
(二)创设情境,导入新课
我们生活在一个图形世界当中,用数学的眼光观察四副图片,你发现了哪种熟悉的图形?
引导学生观察图形特点,如埃及金字塔、通过观察得知,每幅图形中都有等腰三角形出示等腰三角形(通过观察,学生对等腰三角形有了初步的感知。学生对等腰三角形在小学已经学过,轴对称图形上节课学过,所以引入即可)
三、明确目标,互助探究
1、明确目标,自学自练
活动1: 学生动手折叠自制的等腰三角形 教师提出问题:已知:等腰△ABC中,AB=AC(1)等腰三角形是轴对称图形吗?(2)如果是,作出它的对称轴。
(3)你能发现重合的线段和重合的角吗?
学生动手折叠等腰三角形,把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD 教师鼓励学生在操作中尽可能多的探索等腰三角形的特征,并尽量运用自己的语言说明理由。既可以根据折叠过程中某些线段或角重合说明,也可以运用全等来说明。电脑形象的演示,教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想。
学生观察并思考发表自已的看法
学生回答:∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD,AD=AD,AB=AC 师生归纳: 性质1:等腰三角形是轴对称图形,教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。
设计意图:通过学生动手操作,观察猜想,由教师的引导,归纳出等腰三角形的第一条性质,形成感性认识,重视知识的形成过程,培养学生自主探究的学习方法。
2、组内交流,问题反馈 已知:在△ABC中,AB=AC 求证:∠B=∠C
ABC
教师引导学生分析回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,需要如何添加辅助线使它转化为两个三角形?
活动2: 小组合作思考添加辅助线的方法,通过刚才的折叠等腰三角形的实验,学生很容易想到辅助线,想到两种方法:作顶角的平分线AD或作BC边的作中线AD,可找两位学生板演,教师巡视,给予订正。
师生归纳: 性质2:等腰三角形的两个底角相等,简称:等边对等角 并指出它的几何符号语言的书写: ∵ AB=AC(已知)
∴∠B=∠C(等边对等角)
3、梳理问题,分配任务
在等腰△ABC中,AB=AC,你能发现折痕AD有哪些作用吗? 学生总结:(1)AD是顶角∠BAC的平分线
(2)AD是底边BC的中线(3)AD是底边BC的高线
教师归纳:以上就是等腰三角形的“三线合一”,强调是哪三条线段 性质3:等腰三角形的“三线合一”
4、教师讲解,归纳深化
等腰三角形的性质:
(1)等腰三角形是轴对称图形。
(2)等腰三角形的两个底角相等。(简写为“等边对等角”)(3)等腰三角形的顶角的平分线、底边上的中线、底边上的高线重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。“三线合一”的几何语言:
① ∵AB=AC,∠BAD=∠CAD ∴BD=CD,AD⊥BC ② ∵AB=AC,BD=CD ∴∠BAD=∠CAD,AD⊥BC ③ ∵AB=AC,AD⊥BC ∴∠BAD=∠CAD,BD=CD 设计意图:利用小组合作的特点,激发每个学生的参与意识,培养学生的语言转换能力,有助于规范学生对性质的符号表述,增强理性认识,体验性质的正确性,逐步提高学生的逻辑思维能力。
5、巩固训练
活动3:(1)墙上钉了一根木条,小明想检验这根木条是否水平,他拿来一个如图所示的测平仪。在这个测平仪中,AB=AC,BC边的中点D处挂了一个重锤。小明将BC边与木条重合,观察此时重锤是否通过点A。如果重锤过点A,那么这根木条就是水平的。你能说明其中的道理吗?
BDAC
(2)已知:如图,某房屋屋顶是三角形支架,AB=AC,立柱AD⊥BC,若∠BAC=130°, 则∠BAD= ,∠CAD= ,∠B= ,∠C=
ABDC
(3)如图,在下面的等腰三角形中,∠A是顶角,分别求出它们的底角的度数
A60°A90°A120°B①CB②CBC③
学生归纳:等腰三角形中顶角与底角的关系:顶角十 2 ×底角=180° 设计意图:培养学生正确应用所学的知识的应用能力,增强应用意识,参与意识,巩固所学的等 腰三角形的性质.
活动4: 变式训练 变式训练
(1)已知等腰三角形的一个内角为80°,则它的另两个角的度数为
(2)已知等腰三角形的一个内角为100°,则它的另两个角的度数为 教师提出讨论问题,引导学生思考可能的情况,由学生总结情况和相应结果,教师从而归纳分类讨论的数学思想
(3)等腰三角形的腰长为3cm,底边为4cm,则它的周长等于 变式1:等腰三角形的一边为3cm,另一边为4cm,则它的周长等于 变式2:等腰三角形的一边为3cm,另一边为8cm,则它的周长等于
设计意图:运用变式练习,及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力,培养学生分类讨论的思想。
活动5: 拓展提高
(1)、已知:如图,在等腰ΔABC中,AB=AC,∠A=20°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE=
ADE
2)已知:如图,在等腰ΔABC中,AB=AC,DE垂直平分AC,且交AB于点D,连接CD, △BCD的周长为7cm,△ABC的周长为11cm,则AB=
BCAEDC6、精选习题,快乐过关
(1)等腰三角形的一个内角为70°,则它的另两个角的度数为(2)等腰三角形的一边长为5cm,另一边为8cm,则它的周长等于(2)等腰三角形的一边长为5cm,另一边为10cm,则它的周长等于
四、总结归纳,当堂反馈
活动6: 本节课你有哪些新收获?
师生活动:学生用自己语言归纳,教师适时点评,并关注以下几个问题:
1、“等边对等角”;
2、等腰三角形的“三线合一”;
3、等腰三角形的对称轴;
4、等腰三角形常用辅助线作法
作业:
必做题:《伴你学》P33 1-10 选做题:《伴你学》P34 12 设计意图:总结回顾,培养学生的知识整理能力与语言表达能力,这种发自内心的问题,帮助学生归纳和反思自我,通过课后独立思考,自我评价学习效果。板书设计
等腰三角形
(一)等腰三角形的性质
性质1:等腰三角形是轴对称图形。
性质2:等腰三角形的两个底角相等。(简写为“等边对等角”)性质3:等腰三角形的顶角的平分线、底边上的中线、底边上的高线重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
第3篇:等腰三角形教学设计
等腰三角形教学设计
第1课时 等腰三角形(一)
教学目标
【知识与技能】
1.寻找生活实例中的等腰三角形,给等腰三角形下定义,探求等腰三角形的轴对称性和它的相关性质.
2.培养学生自主、合作、探究的学习方式,亲身体验“再发现”过程.
【过程与方法】
在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.
【情感、态度与价值观】
经历探索等腰三角形的轴对称及相关性质的过程,进一步体验轴对称的特征,发展学生的空间意识.重点难点
【重点】
等腰三角形有关性质的探索和应用.
【难点】
等腰三角形性质的验证.
教学过程
一、创设情境,导入新知
教师出示学生熟悉的人字梁屋架:
师:图中的人字架屋架的外观结构形式是什么图形?
生:等腰三角形.
师:它有什么特点呢?
学生思考.
师:我们从这节课开始学习等腰三角形
第4篇:等腰三角形教学设计
河北省刘立锋—《等腰三角形》教学设计
一、教材依据
人教版八年级上册第十四章第14.3节
二、设计思想
本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。教材通过学生对等腰三角形的叠合操作,得出等腰三角形的轴对称性,给出了等腰三角形的性质1,并对性质1进行了证明,从性质1的证明过程中,得出等边三角形性质及等腰三角形性质2,这里“等边对等角是今后证明两角相等常用方法之一,而等腰三角形的“三线合一”是今后证明两条线段相等、两个角相等及两条直线互相垂直的重要依据。运用观察、操作来领悟规律,以全等三角形为推理工具,在交流中突破难点。采用直观教学发现法和启发诱导教学法,与学生实践操作、合作探究。
三、教学目标
1、知识与能力目标:
1、等腰三角形的相关概念,两个定理的理解及应用。
2、掌握等腰三角形
第5篇:等腰三角形教学设计
八年级数学组集体备课教案
《等腰三角形》
一、教学目标
1、知识与能力目标:
①掌握等腰三角形的性质及其两个推论。
②运用等腰三角形的性质及其推论进行有关证明和计算。
2、过程与方法目标:
①让学生体验等腰三角形是一个轴对称性图形。
②经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力。
3、情感、态度、价值观目标:
培养学生协作学习精神,使学生理解事物之间是相互联系和运动变化,培养学生辩证唯物主义观念。
二、教学重点
等腰三角形的性质定理及其证明
三、教学难点
“三线合一”的理解及例1的讲解
四、教学准备
长方形纸片、剪刀、自制等腰三角形纸片
五、教学过程
(一)、创设情景,引入新知
活动1:请同学们把一张长方形的纸片对折,剪去(或用刀子裁)一个角,再把它展开,得到的是什么样三角形? 教师示范操作,然后学生跟着动手操作,观
第6篇:《等腰三角形》教学设计
《等腰三角形》教学设计
作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的《等腰三角形》教学设计,希望能够帮助到大家。
一、教材依据
教材:义务课程标准人民教育出版社八年级上册第十三章第三节第一课时
章节:第十三章三角形
课题:《等腰三角形》
课前准备:收集等腰三角形的相关知识、试题;等腰三角形的悖论、趣题。
准备:多媒体课件、展台、剪刀、矩形纸、白纸。
二、设计思想
本节课主要是在学生学习了其它一般三角形之后进一步学习更复杂的三角形:等腰三角形。在此基础上,本节结合三角形全等、轴对称等知识对等腰三角形进行较为深入的学习,得出等腰三角形的两条性质,1、等腰三
第7篇:等腰三角形教学设计教学设计
等腰三角形
一、目标认知 学习目标:
通过观察发现等腰三角形的性质;掌握等腰三角形的识别方法,会用等腰三角形的性质进行简单的计算和证明;理解等腰三角形与等边三角形的相互关系;能够利用等腰三角形的识别方法判断等腰三角形;掌握等边三角形的特征和识别方法;掌握一般文字命题的解题方法
重点:
等腰三角形的性质与判定。
难点:
比较复杂图形、题目的推理证明。
二、知识要点梳理
知识点一:等腰三角形、腰、底边
有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角
如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
知识点二:等腰三角形的性质
1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:
第8篇:《等腰三角形》教学设计
10.2 等腰三角形(1)
一、学生知识状况分析
在七年级下册第八章《平行线的有关证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级上,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。
二、教学任务分析
本节将进一步利用三角形的定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:
1、知识目标:
理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;
在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利