不等式性质教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“不等式性质教案”。
2010-2011学年度第二学期关集中心校七年级数学组导学案专用纸 主备人:胡伟 审核人: 使用人:
第11周 讨论时间:
不等式的基本性质(1)
教学设计
学习目标
1、理解、掌握不等式的基本性质;
2、能够运用不等式的基本性质解决有关问题.重点难点
重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决办法:不等式的基本性质3的导出,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的.并在理解的基础上加强练习,以期达到学生巩固所学知识的目的.教学方法
先学后教、讨论、探究、讲练结合 教具准备
多媒体,或小黑板 教学设计流程
问题:等式有哪些性质?(学生交流3-5分钟)学生回答等式的性质:
性质1 等式两边同时加(或减)同一个数(或式子),结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:
(1)学生对已学过的等式性质内容的记忆,及叙述语言的准确性;(2)学生对等式性质得出过程的回顾.探讨不等式的基本性质.(学生读文8-10分钟后,研讨并解决下面问题)如果a>b,那么,在数轴上表示a的点A位于表示b的点B的右侧,画图表示.(一)做做
1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比较出两组数的大小关系.(以小组为单位,充分讨论,通过交流得出结论).不等式的基本性质1:如果a>b,那么 a+c>b+c,a-c>b-c.就是说,不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.(二)探究
1.根据8>3,用“>”或“
8×2_______3 × 2; 8×(-2)_______3×(-2).8× _______3× ; 8×(-)_______3×(-).8×0.01______3×0.01; 8×(-0.01)_______3×(-0.01).2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗? 3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗? 4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的基础上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察对比,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的基本性质2:如果a>b,并且c>0,那么ac>bc.不等式的基本性质3:如果a>b,并且c
(三)例题
例 根据不等式的基本性质,把下列不等式化成x>a或x2;(2)2x20.学生独立完成,举手回答问题.教师填写答案,并对学生出现的问题给予指导,进一步巩固不等式的性质.此次活动中教师应重点关注:
(1)学生能否说出填空根据的是不等式的哪一条性质;(2)学生对不等式性质3的掌握情况.解:(1)x-l>2,x-l+l>2+1(不等式的基本性质1),x>3.(2)2x
2x-x
(不等式的基本性质2),x20(不等式的基本性质3),xa或x
(四)教后检测
1.如果a”或“a或x8x+1;(3)x>-4;(4)-10x
(五)当堂训练
1.在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则 a ______12;
(2)若-a<10,则a______ -10; 答:(1)a<12,根据不等式基本性质1.(2)a>-10,根据不等式基本性质3. 2.已知a<0,则
(1)a+2 ______2;
(2)a-1 ______ -1;
(3)3a______ 0;(4)a-1______0;
(5)|a|______0. 答:(1)a+2<2,根据不等式基本性质1.(2)a-1<-1,根据不等式基本性质1.(3)3a<0,根据不等式基本性质2.
(4)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1. 又已知,-1<0,所以 a-1<0.
(5)因为a<0,所以a≠0,所以|a|>0.
(本题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.)3.判断下列各题的推导是否正确?为什么?(投影)(请学生口答)(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.
答:(1)正确,根据不等式基本性质3.(2)正确,根据不等式基本性质1.(3)正确,根据不等式基本性质2.(4)正确,根据不等式基本性质1.(5)不对,应分情况逐一讨论.
当a>0时,3a>2a.(不等式基本性质2)当 a=0时,3a=2a.
当a<0时,3a<2a.(不等式基本性质3)
(学生在回答本题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助)
4.按照下列条件,写出仍能成立的不等式:(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a. 5.用不等号填空:
(1)当a-b<0时,a______ b;(2)当a<0,b<0时,ab ______0;(3)当a<0,b>0时,ab ______0;(4)当a>0,b<0时,ab ______ 0;(5)若a ______ 0,b<0,则ab>0;
(六)教后反思
9.1.2 不等式的性质(2)一、课标分析数学新课程标准提到:要注重提高学生的数学思维能力,即“在学生学习数学运用数学解决问题时,应经历直观感知、观察发现、归纳类比、空间想象......
9.1.2 不等式的性质(2) 教学目标1.知识与技能:理解不等式的性质,会解简单的一元一次不等式,并能在数轴上表示出解集。2.过程与方法:通过经历不等式性质的简单应用,积累数学活动。......
【教学目标】 1.知识与技能:使学生了解不等式的性质,能根据不等式的性质将简单的一元一次不等式转化为或的形式; 2.过程与方法:通过等式的性质类比不等式的性质,使学生经历探索......
不等式的性质教学设计黄陂区泡桐二中 肖季华一、教材分析(一) 本节课在教材中的地位和作用:本节课是人教版《数学》必修5第三章第一节不等关系与不等式第二课时的内容.它是在数(......
《不等式的性质(1)》教学设计一、引入展示任务单的数据分析,向学生明确本堂课的教学内容。二、预习检测学生回答“什么是不等式的性质” 不等式的性质1 不等式两边加(或减)同一个......