二次函数利润应用教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数利润问题教案”。
二次函数与实际问题
利润的最大化问题——教学设计
教学目标:
1、探究实际问题与二次函数的关系
2、让学生掌握用二次函数最值的性质解决最大值问题的方法
3、让学生充分感受实际情景与数学知识合理转化的过程,体会如何遇到问题—提出问题—解决问题的思考脉络。教学重点:
探究利用二次函数的最大值性质解决实际问题的方法 教学难点:
如何将实际问题转化为二次函数的数学问题,并利用函数性质进行决策 教学过程 : 情境设置:水果店售某种水果,平均每天售出20千克,每千克售价60元,进价20元。经市场调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量减少1千克;若每降价1元,日销售量将增加2千克。现商店为增加利润,扩大销售,尽量减少库存,决定采取适当措施。
(1)如果水果店日销水果要盈利1200元,那么每千克这种水果应涨价或降价多少元?
解:设每千克这种水果降价x元。
(60-20-x)(20+2x)=1200
解得x=10或x =20 水果店扩大销售,尽量减少库存 x=10不合题意,舍 x=20 答:每千克这种水果应降价20元。
(2)如果水果店日销水果要盈利最多,应如何调价?最多获利多少元?
设计:问题1是利用一元二次方程解决问题,引导学生先根据题意判断出应只选择降价,只是一种可能。通过分析“降价”让学生自主完成,教师点评,强调验根。因学生已经学习过一元二次方程,困难不会太大。
问题2,引导学生由一元二次方程过度到二次函数,并想到利用二次函数最值的性质去解决问题。给学生空间时间去思考。老师问两个问题;1 怎样设?2什么方法去解决?
解:设每千克这种水果降价x元。y=(60-20-x)(20+2x)=-2 x²+60x+800(0
当x= 15时,y最大 此时,y=1250
答:每千克应降价15元,使获利最多,最多可获利1250元。得到答案后,学生自做帮学生梳理过程,并画图象,更深刻体会。易忽略自变取值范围。
小结:解决利润最大化问题的基本方法和步骤: 方法:二次函数思想
步骤
1、设自变量
2、建立函数解析式
3、确定自变量取值范围
4、顶点公式求出最值(在自变量取值范围内)
变式:若将题中“扩大销售,尽量减少库存”去掉,水果店应如何调价?
解:分两种情况讨论:
(1)设每千克这种水果降价x元。y=(60-20-x)(20+2x)=-2 x²+60x+800(0
当x =15时,y最大 此时,y=1250 答:每千克应降价15元,使获利最多,最多可获利1250元。
(2)设每千克这种水果应涨价x元 y=(60-20+x)(20-x)=-x²-20x+800(0
当x>-10 时,y随x增大而减小
当x=0时,y取最大值
此时y=800 由上述讨论可知:应每千克降价15元,获利最多,最多可获利为1250元。
让学生想到是二种可能,涨价和降价,得分类讨论思想,函数思想,数形结合思想。强调在自变量取值范围内取最值,如顶点不在这个范围,根据函数图象的增减性来判断,而且实际问题的图象不是整个的抛物线,而是局部,这取决于自变量取值范围。学生自己整哩书写,教师指导。练习与作业
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。设每件涨价x元(x为非负整数),每星期的销售为y件。
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多......
二次函数的应用教学设计一、教学分析(一)教学内容分析二次函数yax2bxc的图像和性质是人教版九年级数学下册的内容,是在学生学习了二次函数的基本概念及yax2bxc的图像和性质之后......
第1篇:二次函数的应用教学设计二次函数的应用教学设计教学目标 【知识与技能】能应用二次函数的图象来分析问题、解决问题,在应用中体会二次函数的实际意义.【过程与方法】1.......
课题 :第26章 二次函数 专项训练 抛物线的变换教学背景:二次函数是九年级下册数学中的重要教学内容,它从具体问题入手,通过实例巩固学生所学的知识。让学生通过平移旋转的特征,充......
教学内容:人教版九年义务教育初中第三册第108页教学目标:1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2.2.通过变式教学,培养学生思维的敏捷性、......