一次函数教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“一次函数教案教学设计”。
《 一次函数》的教学设计
一、教学目标 1.教学知识点
掌握一次函数解析式的特点及意义,知道一次函数与正比例函数关系,理解一次函数图象特征与解析式的联系规律,会用简单方法画一次函数图象。2.能力训练要求
通过类比的方法学习一次函数,体会数学研究方法多样性,利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.
3、情感态度与价值观
通过画函数图象体验数与形的内在联系,感受函数图象的简洁美。
二、教学重难点
重点: 一次函数解析式特点,一次函数图象特征与解析式联系规律,一次函数图象的画法.
难点: 一次函数与正比例函数关系,一次函数图象特征与解析式的联系规律.
三、教学方法
用类比的方法降低新知识的难度,促进知识之间的联系,利用数形结合思想,进一步分析一次函数与正比例函数的联系。整个过程就是合作─探究,总结─归纳.
四、学法指导
利用学生描点作图经历体验并发现问题,分析问题和进一步归纳总结,让学生在探索中体验知识的生活过程,培养学生独立思考能力,阅读能力和自主探究的学习习惯
五、教学工具:多媒体演示.
六、教学过程
Ⅰ.提出问题,创设情境
问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.
分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为: y=15-6x(x≥0)
当然,这个函数也可表示为: y=-6x+15(x≥0)
当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.
Ⅱ.导入新课
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.
2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.
3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).
4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.
这些问题的函数解析式分别为:
1.C=7t-35. 2.G=h-105.
3.y=0.01x+22. 4.y=-5x+50.
它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.
如果我们用b来表示这个常数的话.•这些函数形式就可以写成: y=kx+b(k≠0)
一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.
例1 下列哪些函数是一次函数,哪些又是正比例函数.7(1)y3x4;(2)y; x(3)y9x;(4)y4x21;
(5)m2x6.练习:
1.下列函数中哪些是一次函数,哪些又是正比例函数?
8(1)y=-8x.(2)y=x.
(3)y=5x2+6.(3)y=-0.5x-1.
2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.
(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.
3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?
解答:
1.(1)(4)是一次函数;(1)又是正比例函数.
2.(1)v=2t,它是一次函数.
(2)当t=2.5时,v=2×2.5=5 所以第2.5秒时小球速度为5米/秒.
3.函数解析式:y=50-5x 自变量取值范围:0≤x≤10 y是x的一次函数. [活动一] 活动内容设计:
画出函数y=x,y=x+2与y=x-2的图象.并比较两个函数图象,探究它们的联系及解释原因. 活动设计意图:
通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.
教师活动:
引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.
学生活动:
引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现. 比较上面两个函数的图象的相同点与不同点。
结果:这两个函数的图象形状都是______,并且倾斜程度_______.函数 y=x的图象经过原点,函数 y=x+2的图象与 y轴交于点_______,即它可以看作由直线y=x 向_平移__个单位长度而得到.函数 y=x-2的图象与 y轴交于点_______,即它可以看作由直线y=x 向_平移__个单位长度而得到.比较三个函数解析式,试解释这是为什么.猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?
结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线 y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b< 0时,向下平移)。
你会画出函数y=2x-1与 y=x+1 的图象吗?
y=2x-1的图象是经过点(0,-1)和点(1,1)的直线,y=x+1 是经过点(0,1)点(1,2)的直线。
注意:图象与y轴交于(0,b),b就是与y轴交点的纵坐标,正在原点上、负在原点下。[活动二] 活动内容设计:
画出函数y=x+
1、y=-x+
1、y=2x+
1、y=-2x+1的图象.由它们联想:一次函数解析式y=kx+b(k、b是常数,k≠0)中,k的正负对函数图象有什么影响?
活动设计意图:
通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.
目的:
引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k•值的联系.
结论:
图象:
规律:
当k>0时,直线y=kx+b由左至右上升;当k
性质:
当k>0时,y随x增大而增大.
当k
随堂练习
(1)下列函数中,y的值随x值的增大而增大的函数是________.A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2(2)直线y=3x-2可由直线y=3x向 平移 单位得到。
(3)直线y=x+2可由直线y=x-1向 平移 单位得到。4)对于函数y=5x+6,y的值随x的值减小而______。5)函数y=2x-1经过 象限
(6)函数y=2x-4与y轴的交点为(),与x轴交于()让学生谈收获
1、怎样的函数是一次函数?
一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。当b=0时,y=kx+b就变成了y=kx,所以说正比例函数是一种特殊的一次函数。
2、一次函数的简单应用。
3、会画一次函数的图象
4、一次函数的图象与性质,常数k,b的意义和作用 作业:
1、课本120页习题3、5;
2、完成本节课的配套练习
次 函 数》教学设计仪陇县二道中学:陈润辉教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级下册第十九章的内容。本节内容是在学生学习函数的概念基础上......
刀豆文库小编为你整合推荐4篇一次函数教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
一次函数教学设计在座的各位老师,大家好!我是,我今天说课的内容是华师大版《数学》八年级下册第17章:一次函数课时内容,下面我将从以下几个方面做教学说明。 教学目标:1.了解一次函......
19.2.2 一次函数 第1课时一次函数的概念教学目标 【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解......
12999数学网 www.daodoc.com13.2《一次函数》教学设计 教学任务分析一、教学内容本课题是义务教育课程标准实验教科书《数学》八年级上册(沪科版),第十三章第二节的第一课时。......