高考数学复习 概率统计典型例题_概率论复习经典习题

其他范文 时间:2020-02-28 12:00:03 收藏本文下载本文
【www.daodoc.com - 其他范文】

高考数学复习 概率统计典型例题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“概率论复习经典习题”。

高考数学复习 概率统计典型例题

例1 下列命题:

(1)3,3,4,4,5,5,5的众数是5;

(2)3,3,4,4,5,5,5的中位数是4.5;

(3)频率分布直方图中每一个小长方形的面积等于该组的频率;

(4)频率分布表中各小组的频数之和等于1

以上各题中正确命题的个数是 [ ].

A.1个 B.2个 C.3个 D.4个

分析:回忆统计初步中众数、中位数、频数、频率等概念,认真分析每个命题的真假.

解:(1)数据3,3,4,4,5,5,5中5出现次数最多3次,5是众数,是真命题.

(2)数据3,3,4,4,5,5,5有七个数据,中间数据是4不是4.5,是假命题.

(3)由频率分布直方图中的结构知,是真命题.

(4)频率分布表中各小组的频数之和是这组数据的个数而不是1,是假命题.

所以正确命题的个数是2个,应选B.

例2 选择题:

(1)甲、乙两个样本,甲的样本方差是0.4,乙的样本方差是0.2,那么 [ ]

A.甲的波动比乙的波动大;

B.乙的波动比甲的波动大;

C.甲、乙的波动大小一样;

D.甲、乙的波动大小关系不能确定.

(2)在频率直方图中,每个小长方形的面积等于 [ ]

A.组距 B.组数

C.每小组的频数 D.每小组的频率

分析:用样本方差来衡量一个样本波动大小,样本方差越大说明样本的波动越大.

用心 爱心 专心

122号编辑

解:(1)∵0.4>0.2,∴甲的波动比乙的波动大,选A.

例3 为了了解中年人在科技队伍中的比例,对某科研单位全体科技人员的年龄进行登记,结果如下(单位:岁)

44,40,31,38,43,45,56,45,46,42,55,41,44,46,52,39,46,47,36,50,47,54,50,39,30,48,48,52,39,46,44,41,49,53,64,49,49,61,48,47,59,55,51,67,60,56,65,59,45,28.

列出样本的频率分布表,绘出频率分布直方图.

解:按五个步骤进行:

(1)求数据最大值和最小值:

已知数据的最大值是67,最小值是28

∴最大值与最小值之差为67-28=39

(2)求组距与组数:

组距为5(岁),分为8组.

(3)决定分点

(4)列频分布表

用心 爱心 专心

122号编辑

(5)绘频率分布直方图:

例4 某校抽检64名学生的体重如下(单位:千克).

列出样本的频率分布表,绘出频率分布直方图.

分析:对这组数据进行适当整理,一步步按规定步骤进行.

解:(1)计算最大值与最小值的差:48-29=19(千克)

(2)决定组距与组数

样本容量是64,最大值与最小值的差是19千克,如果取组距为2千克,19÷2=9.5,分10组比较合适.

(3)决定分点,使分点比数据多取一位小数,第一组起点数定为28.5,其它分点见下表.

(4)列频率分布表.

用心 爱心 专心

122号编辑

(5)画频率分布直方图(见图3-1)

说明:

长方形的高与频数成正比,如果设频数为1的小长方形的高为h,频数为4时,相应的小长方形的高就应该是4h.

例5 有一个容量为60的样本,(60名学生的数学考试成绩),分组情况如下表:

(1)填出表中所剩的空格;

(2)画出频率分布直方图.

分析:

用心 爱心 专心

122号编辑

各组频数之和为60

各组频率之和为1

解:

因为各小组频率之和=1

所以第4小组频率=1-0.05-0.1-0.2-0.3=0.35

所以第4小组频数=0.35×60=第5小组频数=0.3×60=18

(2)

例6 某班学生一次数学考试成绩的频率分布直方图,其中纵轴表示学生数,观察图形,回答:

(1)全班有多少学生?

用心 爱心 专心

122号编辑

(2)此次考试平均成绩大概是多少?

(3)不及格的人数有多少?占全班多大比例?

(4)如果80分以上的成绩算优良,那么这个班的优良率是多少?

分析:根据直方图的表示意义认真分析求解.

解:(1)29~39分1人,39~49分2人,49~59分3人,59~69分8人,69~79分10人,79~89分14人,89~99分6人.

共计 1+2+3+8+10+14+6=44(人)

(2)取中间值计算

(3)前三个小组中有1+2+3=6人不及格占全班比例为13.6%.

(4)优良的人数为14+6=20,20÷44=45.5%.

即优良率为45.5%.

说明:频率分布表比较确切,但直方图比较直观,这里给出了直方图,从图也可以估计出一些数量的近似值,要学会认识图形.

例7 回答下列问题:

用心 爱心 专心

122号编辑

总是成立吗?

(2)一组数据据的方差一定是正数吗?

总是成立吗?

(4)为什么全部频率的累积等于1?

解:(1)证明恒等式的办法之一,是变形,从较繁的一边变到较简单的一边.这

可见,总是成立.

顺水推舟,我们用类似的方法证明(3);注意

那么有

(2)对任一组数x1,x2,„,xn,方差

这是因为自然数n>0,而若干个实数的平方和为非负,那么S2是有可对等于0的从而x1=x2=„=xn,就是说,除了由完全相同的数构成的数组以外,任何数组的方差定为正数.

用心 爱心 专心

122号编辑

(4)设一个数组或样本的容量为n,共分为m个组,其频数分别为a1,a2,„,am,按规定,有

a1+a2+„+am=n,而各组的频率分别a1/n,a2/n,„,am/n,因此,有

说明:在同一个问题里,我们处理了同一组数据x1,„,xn有关的两个数组f1,f2,„,fk和a1,a2,„,am,前者是说:在这组数中,不同的只有k个,而每个出现的次数分别为f1,„,fk;后者则说明这组数所占的整个范围被分成了m个等长的区间,出现在各个区间中的xi的个数分别为a1,„,am,可见,a1,„,an是f1,„fk的推广,而前面说过的众数,不过是其fi最大的那个数.

弄清研究数组x1,„,xn的有关数和概念间的联系与区别,是很重要的.

例8 回答下列问题:

(1)什么是总体?个体?样本?有哪些抽样方法?

(2)反映样本(或数据)数量水平的标志值有哪几个?意义是什么?怎样求?

(3)反映样本(或数据)波动(偏差)大小的标志值有哪几个?怎样求?有什么区别?

(4)反映样本(或数据)分布规律的数量指标和几何对象是什么?获得的一般步骤是什么?

解:这是一组概念题,我们简略回答:

(1)在统计学里,把要考查对象的全体叫做总体;其中每个考查对象叫个体;从总体中抽出的一部分个体叫做总体的一个样本;样本中个体的数目,叫做样本的容量.

应指出的是,这里的个体,是指反映某事物性质的数量指标,也就是数据,而不是事物本身,因此,总体的样本,也都是数的集合.

抽样方法通常有三种:随机抽样、系统抽样和分层抽样三种,基本原则是:力求排除主观因素的影响,使样本具有较强的代表性.

(2)反映样本(或数据)数量水平或集中趋势的标志值有三个,即平均数、众数和中位数.

有时写成代换形式;

用心 爱心 专心

122号编辑

有时写成加权平均的形式:

其中,又有总体平均数(总体中所有个体的平均数)和样本平均数(样本中所有个体的平均数)两种,通常,我们是用样本平均数去估计总体平均数.且一般说来,样本容量越大,对总体的估计也就越精确.

(ii)众数,就是在一组数据中,出现次数最多的数.通常采用爬山法或计票画“正”法去寻找.(爬山法是:看第一个数出现次数,再看第二、三、„„有出现次数比它多的,有,则“爬到”这个数,再往后看„„).

(iii)中位数是当把数据按大小顺序排列时,居于中间位置的一个数或两个数的平均,它与数据的排列顺序有关.

此外,还有去尾平均(去掉一个最高和一个最低的,然后平均)、总和等,也能反映总体水平.

(3)反映样本(数据)偏差或波动大小的标志值有两个:

(ii)标准差:一组数据方差的平方根:

标准差有两个优点,一是其度量单位与原数据一致;二是缓解S2过大或过小的现象.方差也可用代换式简化计算:

(4)反映数据分布规律的是频率分布和它的直方图,一般步骤是:

(i)计算极差=最大数-最小数;

用心 爱心 专心

122号编辑

(iii)决定分点(可用比数据多一位小数的办法);

(v)画频率分布直方图.

其中,分布表比较确切,直方图比较直观.

说明:此例很“大”,但是必要的,因为,当前大多数的中考题,很重视基本内容的表述,通过“填空”和“选择”加以考查,我们要予以扎实.而更为重要的,这些概念和方法,正是通过偶然认识必然,通过无序把握有序,通过部分估计整体的统计思想在数学中的实现.

用心 爱心 专心

122号编辑

工程数学(线性代数与概率统计)第三章典型例题分析

第三章例1 设A为n阶方阵,若存在正整数k和向量,使Ak0,且Ak10.证明:向量组,A,,Ak1线性无关.证明:(利用线性无关定义证明) 假设有常数1,2,,k,使得k1AA0 (1) 12k将(1)两边左乘Ak1,可得1Ak12Ak......

高等数学概率统计基础部分典型例题解析

高等数学(2)概率统计基础部分典型例题解析第1章 随机事件与概率例1 填空题(1)设A与B是两个事件,则P(A)P(AB)+ 。 (2)若P(A)0.4,P(AB)0.3,则P(AB) 。(3)设A,B互不相容,且P(A)0,则P(BA)。......

应用统计典型例题

关于矩估计与极大似然估计的典型例题 例1,设总体X 具有分布律231X~22(1)(1)2其中01为未知参数。已经取得了样本值x11,x22,x31,试求参数的矩估计与极大似然估计。解:(i)求矩估计量......

概率统计复习重点

概率统计复习重点:1.全概率公式应用题。练习题:有两只口袋,甲袋装有a只白球,b只黑球,乙袋中装有n只白球,m只黑球,(1)从甲袋中任取1球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中......

工程数学(线性代数与概率统计)复旦大学出版社,第二章典型例题分析

第 二 章例111设A为三阶方阵,A为其伴随矩阵, A,求(A)110A*.23*1解:因为A可逆,定理3.1A1**A,AA1AA,代入原式得,11(A)10A*3A110A1A2A18A18*2163例2 32nA设,求A.03解:由于A的主对角元素......

下载高考数学复习 概率统计典型例题word格式文档
下载高考数学复习 概率统计典型例题.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文