数学归纳法证明不等式学案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“不等式证明学案”。
§2.3用数学归纳法证明不等式
学习目标:1.理解数学归纳法的定义、数学归纳法证明基本步骤;
2.重、难点:应用数学归纳法证明不等式.一、知识情景:
关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:
10.验证n取时命题(即n=n时命题成立)(归纳奠基)
20.假设当时命题成立,证明当n=k+1时命题(归纳递推).30.由10、20知,对于一切n≥n的自然数n命题!(结论)
要诀: 递推基础不可少,归纳假设要用到,结论写明莫忘掉.二、数学归纳法的应用:
例1.用数学归纳法证明不等式sinn≤nsin.(nN)
例2证明贝努力(Bernoulli)不等式:
已知xR,且x> 1,且x0,nN*,n≥2.求证:(1+x)n>1+nx.1;
例3 证明: 如果n(n为正整数)个正数a1,a2,,an的乘积a1a2an1,那么它们的和a1a2an≥n.三、当堂检测
1、(1)不等式2nn4对哪些正整数n成立?证明你的结论。
(2)求满足不等式(11n
n)n的正整数n的范围。
2、用数学归纳法证明
2n2n2(nN*).
§2.3用数学归纳法证明不等式作业纸班级姓名
1、用数学归纳法证明3≥n(n≥3,n∈N)第一步应验证()
A.n=1B.n=2C.n=3D.n=42、观察下面两个数列,从第几项起an始终小于bn?证明你的结论。
{an=n}:1,4,9,16,25,36,49,64,81, ……{bn=2}:2,4,8,16,32,64,128,256,512, …… k
2n3、用数学归纳法证明:对于任意大于1的正整数n,不等式1221321n1n
n都成立。
4、若a、b、c三个正数成等差数列,公差d0,自然数n2,求证:ancn2bn。
数学归纳法证明不等式学案数学归纳法证明不等式学案学案 4.1.1数学归纳法证明不等式6、.用数学归纳法证明4 +3n+2能被13整除,其中n∈N7、求证:8、已知, , 用数学归纳法证明:9、.......
数学归纳法证明不等式巩固学案1.用数学归纳法证明“≥,(n∈N+)”时,由n=k到n=k+1n1n2n3nn24时,不等式左边应添加的项是() A.B.C D.2k12k2k1k22(k1)2k12k22k12k2......
§14不等式的证明不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和......
不等式的证明比较法证明不等式a2b2ab1.设ab0,求证:2.ab2ab2.(本小题满分10分)选修4—5:不等式选讲(1)已知x、y都是正实数,求证:x3y3x2yxy2;(2对满足xyz1的一切正实数 x,y,z恒成立,求实数......
不等式证明不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变......