几何证明专题训练_几何证明题训练二

证明 时间:2020-02-27 22:40:12 收藏本文下载本文
【www.daodoc.com - 证明】

几何证明专题训练由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“几何证明题训练二”。

几何证明专题训练

1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:

CD=GF.(初二)

2已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二)

4已知:如图,在四边形

ABCD

中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.5已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM

⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)

设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设

MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交

MN于P、Q。

求证:AP=AQ.如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形

CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)

如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与

CD相交于F.求证:CE=CF.(初二)

如图,四边形ABCD为正方形,DE∥AC,且

CE=CA,直线EC交DA延长线于F.求证:

AE=AF.设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)

如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)

已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)

设P是平行四边形ABCD内部的一点,且∠PBA=∠

PDA.求证:∠PAB=∠PCB.(初二)

设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)

平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二)

设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L

已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值。

P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长。

如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y(单位:千米)与所用

时间

x(单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时。

(1)请在图中画出公共汽车距乌鲁木齐市的路程y(千米)与所用时间x(小时)的函数图象。

(2)求两车在途中相遇的次数(直接写出答案)。(3)求两车最后一次相遇时,距乌鲁木齐市的路程。

如图9,在矩形OABC中,已知A、C两点的坐标分别为(40)(02)AC,、,D为OA的中点.设点P是AOC平分线上的一个动点(不与点O重合).(1)试证明:无论点P运动到何处,PC总与PD相等;

(2)当点P运动到与点B的距离最小时,试确定过OPD、、三点的抛物线的解析式;

(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,PDE△的周长最小?求出此时点P的坐标和PDE△的周长;

(4)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请直接写出点P的坐标.

几何证明选讲训练

几何证明选讲专题1.如图所示,在四边形ABCD中,EF//BC,FG//AD,则EFFGBCAD1由平行线分线段成比例可知EFAFFGFCEFFGAFFC,所以,1 BCACADACBCADAC2.在平行四边形ABCD中,点E在边AB上,且AE:E......

中考数学题型训练(几何证明)

中考数学题型训练(二)几何证明(中等)一、基本型:1、(肇庆2010) (8分)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.(1)求证:△CEB≌△ADC;(2)若AD=9cm,DE=6cm,求BE及EF的长.BE......

中考数学几何证明专题训练

中科教育初三数学春季讲义中考数学几何证明专题1、已知:AB=CD、AD//BC,OA=OD,求证:OB=OCB2、已知:AB=CD、AD//BC,OA=OD,求证:OB=OC3、在菱形ABCD中,GE⊥CD、HF⊥AD,求证:GE=HF4、图,平行......

几何证明

2013几何证明1.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C900,A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为__________......

几何证明

几何证明1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数2.已知∠BED=∠B+∠D,试说明AB与CD的位置关系3.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。4.如......

下载几何证明专题训练word格式文档
下载几何证明专题训练.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文