山东省龙口市兰高镇中考数学一轮复习练习九图形与证明1无答案鲁教版由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“苏教版中考数学证明题”。
(图形与证明1)
命题方向:图形的证明是平面几何的重要内容。在各省、市中考题中所占的比例都很大,题型多以证明题为主,也有很多是与其他知识综合的压轴题。
备考攻略:尤其是近几年在这个问题中引入了运动变化的形式,增加了试题的开放性与灵活性,既考查了学生的逻辑推理能力,也考查了运用数学知识解决问题的能力,解答这部分题需较高的思维水平,善于发现运动中变化的量的规律及不变量,正确画出变化后的图形,运用图形相关的定理进行论证。巩固练习:
1.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.
2.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.
3.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
4.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD. 求证:BC=ED.
5.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
6.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.
7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()D.1.2km
A.0.5km B.0.6km C.0.9km8.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.
9.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
10.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM. ①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK… 请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可). 11.内角和为540°的多边形是()
A. B. C. D.
12.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .13.正十边形的每个外角等于()A.18° B.36° C.45° D.60°
14.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.
15.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
16.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.
17.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
18.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
20.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为 .
21.在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1. ①依题意补全图1;
②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)
22.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.
(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的数;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,之间的数量关系,并证明.
FD度 6
(实数)命题方向:实数这部分在初中数学中属于基础知识,课程标准对这部分知识点的要求都比较低,在各地中考中多以选择题、填空题的形式出现,也有少量计算题。备考攻略:这部分的主要任......
图形与证明复习题(3)一、基础练习1、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有()A、3个B、4个C......
巩固1.下列几种推理过程是演绎推理的是() A.两条直线平行,同旁内角互补,如果∠A与∠B是两条直线的同旁内角,则∠A+∠B=180°B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三......
刀豆文库小编为你整合推荐6篇高考数学一轮复习排列与组合专题练习及答案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
高考数学一轮复习排列与组合专题练习及答案一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是_......