连除应用题教案

精品范文 时间:2024-06-29 07:12:25 收藏本文下载本文

第1篇:连除应用题教案

连除应用题教案

作为一名默默奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编整理的连除应用题教案,希望能够帮助到大家。

连除应用题教案1

教学目标:

1、理解并掌握连除应用题的数量关系。

2、通过举实际例子亲身体验并感受连除应用题的数量关系,并在亲身体验中通过合作、交流得出连除应用题的两种计算方法。

3、能用两种方法正确解答应用题。

4、通过加强与生活的联系,感受到生活来源于生活,又用于生活。

教学重点:

掌握数量关系,并能用两种方法正确列式计算。

教学难点:

理解数量关系并能说出想法。

教学关键:

通过举实际例子体验数量关系。

教学过程:

一、引入

1、谈话:

(1)(拿起粉笔)工厂里生产出一支一支的粉笔,卖给我们的学校是不是一支一支拿过来呢?(得出先装成盒再装成箱)

(2)生举例子:生活中这样的例子还有很多很多,你们还能举吗?(举出不同情况的例子)

2、动手操作、加深印象:把12支铅笔平均分成2份,每份是几?把每份6支平均分成3份,每份是几?

小结:刚才进行了几次平均分?

3、提供材料:假设一个工厂生产了4800支粉笔、每60支装

一盒、每20盒装一箱、装了4箱。

(1)观察从这些材料中你知道了什么?

(2)选择其中的一些材料,提出问题编出应用题。

4、呈现学生编的应用题;

(1)一步计算的、两步计算的、

(2)解决一步计算的与两步计算的连乘的应用题

(个别学生说说自己的理由)

如:一个工厂生产了4800支粉笔,平均装了4箱,每20盒装一箱,平均每盒装多少支?(可能也有不同的:如问题是装了几箱。)

二、展开

1、独立思考:指着两步计算连除的应用题这样的又该怎么解答呢?看谁的方法多。

2、小组交流:把你的想法说给你们小组的小朋友听;认真别人的不同的法想;小组长作好记录准备汇报。

3、全班交流:刚才每小组的小朋友都非常积极地说自己的想法,且也非常认真地听别的小朋友的不同的想法,每小组肯定都有很好的、很精彩的解法,把你们的想法展示出来吧。

(1)平均每箱装了多少支?

4800÷4=1200(支)

(2)平均每盒装了多少支?

1200÷20=60(支)

综合算式:4800÷4÷20=60(支)

这里学生说这种想法时出示线段图加深理解。

或:(1)一共装了多少盒?

20×4=80(盒)

(2)平均每盒放多少支?

4800÷80=60(支)

综合算式:4800÷(20×4)=60(支)

生选择一种说说想法、同桌互说想法。

小结:刚才做的题目有什么特点:进行了两次平均分。

4、试一试:

学校图书馆买来864本新书,平均放在6个书架上,每上书架有4层。平均每层放多少本?

(1)独立做(用两种方法解答)

(2)交流说说解题思路(个别说、同桌互说)

5、比较、概括:刚才做的这道题目与开始时做的那道连乘应用题有什么相同与不同之处?

同时出示课题:连除应用题

三、练习

1、针对练:用两种方法解答。

(1)电池厂生产了4800节电池,每12节装一盒,每8盒装一箱。一共可以装多少箱?

(2)三年级有2个班,每班有42人,一共栽树336棵。平均每人栽树多少棵?

独立做、个别说想法。

2、比较练:

(1)商场运来3箱衬衣,每箱有24件,每件95元。一共卖了多少元?

(2)商场运来3箱衬衣,每箱有24件,一共卖了6840元。每件衬衣多少元?

独立做、个别说想法、比较两题有什么相同与不同之处?

3、提高练:先补充条件,再列式计算。

食堂运来2车大米,每车有15袋,平均每袋大米重多少千克?

独立做、汇报。

四、 小结:你有什么新收获?

五、作业:课堂作业第45页。

板书:连除应用题

一个工厂生产了4800支粉笔,平均装了4箱,每20盒装一箱,平均每盒装多少支?

平均每箱装了多少支?

4800÷4=1200(支)

每盒装了多少支?

1200÷20=60(支)

综合算式:4800÷4÷20=60(支)

一共装了多少盒?

20×4=80(盒)

平均每盒放多少支?

4800÷80=60(支)

综合算式:4800÷(20×4)=60(支)

答:每盒60支。

连除应用题教案2

教学内容:教材第11——12页。

教学目标:

使学生掌握三位数连除应用题的结构,能够正确列式解题。

学生自主探索三位数连除应用题的解题方法,出解题规律。

教学重难点:理解这类应用题的结构,正确进行解题。

教学具准备:小黑板、挂图

教学过程:

一、复习旧知

1、口算

40÷560÷580÷5

100÷545÷348÷4

46÷2420÷7

2、笔算

654÷3498÷8555÷6

768÷9368÷4490÷8

二、新授

1、揭示课题

今天这节课我们学习三位数的连除应用题,板书课题。三位数的连除应用题。

2、出示例题

有两个书架一共放了224本书,每个书架有4层,平均每个书架每层放多少本书?

方法1、224÷2=112(本)

112÷4=28(本)

方法2、4×2=8(层)

224÷8=28(本)

①教师指着方法1指名回答:你是如何想的,说出你的思考过程,

224÷2=112(本)这道算式是什么意思,

112÷4=28(本)又是什么意思?

②教师指着方法1指名回答:你是如何想的,说出你的思考过程,

4×2=8(层)这道算式是什么意思,

224÷8=28(本)又是什么意思?

③指名回答刚才这题的思考过程。

三、巩固练习

1、想想做做的第1题

全班校对。

2、想想做做的第2、3题

四、全课

五、布置作业

想想做做的第4——7题

连除应用题教案3

教学目标

1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。

2.进一步提高学生的分析概括能力及解题能力。

教学重点

找准单位1,巩固分数除法应用题的解答方法。

教学难点

掌握分数连除应用题的结构及数量关系。

教学过程

(一)复习

(投影)

1.找准单位1,并列式解答。

2.出示准备题。

(1)读题,请学生找出已知条件和未知条件。

(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)

提问:美术组,生物组,航模组三个数量之间有什么关系。

(4)请一名同学列式解答,然后订正。

(二)讲授新课

老师把准备题进行改编。

指名读题,找出已知条件和未知条件。

1.指导学生画图。

提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)

提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)

老师按学生的回答,把准备题的图示进行修改。

2.找出含有分率的句子,进行分析。

(3)这道题中有几个单位1?美术组、生物组、航模组三量之间有什么关系?

(4)根据三量之间的关系,列出等量关系式。

(5)这个式子的等号两边相等吗?为什么?人。)

学生回答,老师板书:

3.根据等量关系列方程解答。

提问:根据上面的分析,应设谁为x?(设美术组人数为x。)

老师板书:

解 设美术组有x人。

答:美术组有30人。

看方程提问:

(3)为什么要设美术组人数为x?

(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)

师小结:对于含有两个已知一个数的几分之几是多少,求这个数这样条件的复合应用题,首先要找准单位1,在两个单位1都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。

(三)巩固练习

(投影)

先讨论以下问题,再动笔做:找出单位1,画图并分析数量关系。

2.看图,找出数量间相等的关系,并列方程解答:

(1)说出这个图所反映的等量关系式。

(2)师小结:这道题出现了小汽车是大汽车的4倍,而不是几分之几,但它们的数量关系不变,解题思路也一样。

师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)

三好生4人。

学生动笔做,老师带领学生订正。

的高是多少厘米?

根据题意填空:

是( )厘米。设( )为x。

果树有多棵?

(四)课堂总结

今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)

这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)

(五)布置作业

(略)

课堂教学设计说明

本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。

连除应用题教案4

教学目的

通过练习,使学生进一步掌握连除应用题的数量关系和解题方法,提高学生的计算能力和应用题的解题能力。

一、计算练习

做练习二十三的第5、6、11题

1、 第6题,让学生独立口算,共同核对得数。

2、 第6题,让学生独立笔算,填出得数,集体订正。

3、 第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。

二、应用题解题练习

练习二十三的第7-10题及第12、14、15题

1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:

7200 ÷12÷ 6 7200 ÷ (12 ÷ 6)

=600 ÷ 6 =7200 ÷ 72

=100(箱) =100(箱)

让学生比较两种解法的不同。

2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。

3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。

4、 第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。

5、 第14、15题,让学生独立列出综合算式解答,集体订正。

三、应用题补充条件、问题练习

做练习二十三的第13、16题

1、 第13题,读题,明确条件,然后给予适当的启发。

2、 第16题,要求学生补充一个条件和一个问题,成为一道两步应用题;再补充另一个条件和问题,成为另一道两步应用题

3、 整理和复习

复习混合运算式题、文字题和连乘、连除应用题

教学内容

课本第116页的第1-3题;练习二十六的第1-4题

教学目的

1、 通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。

2、 使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。

教学过程

一、复习混合运算

1、 混合运算式题

(1) 做课本第116页第1题及补充题

97-12× 6+43 29+187÷ 17-34

156-56÷ 4× 7 (350-275)×(19+25)

(2)做练习二十六的第1题

学生独立做,教师巡视,发现问题,集体订正。

(3)做练习二十六的第3题

左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。

2、 两步计算文字题

做第116页的第2题

让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式

做练习二十六的第2题

让学生独立列出综合算式计算,指名答出,共同订正。

二、复习连乘、连除应用题

1、 做课本第116页的第3题

让学生根据题意画线段图,教师巡视指导。

解答后,引导学生把它改编成用除法计算的两步应用题。

2、 练习二十六的第4题

让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。

连除应用题教案5

教学目标

1.理解此类连除应用题的数量关系,能用两种方法解答此类应用题.

2.正确列综合算式解答应用题,理解连除与连乘应用题的互逆关系.

3.培养学生分析推理能力和逆向思维能力.

教学重点

分析理解数量关系.

教学难点

利用线段图理解数量关系,确定计算步骤.

教学步骤

一、复习.

一种织布机每台每小时织布4米,5台织布机8小时可织布多少米?

要求学生:画线段图,并用两种方法解答.

二、探究新知.

1.出示例2:一种织布机5台8小时织布160米,平均每台每小时可织布多少米?

讨论:例题与复习题相比较,有什么特点?

结果:例题与复习题的问题与已知条件换了位.

根据学生汇报的讨论结果,让学生在复习题的两个线段图上,标注一下,已知什么,求什么?

2.引导学生对照线段图讨论:要想求出每台每小时织布多少米,我们应先求什么?

让学生在线段图中标出是哪一段,应该怎样求?根据学生回答,教师板书每一步的小标题.让学生在练习本上分步解答并汇报结果,教师板书:

(1)每台织布机8小时织布多少米?

1605=32(米)

(2)每台织布机每小时织布多少米?

328=4(米)

引导学生列综合算式解答:

16058

= 32 8

= 4(米)

答:平均每台织布机每小时织布4米.

3.改例2线段图的问题和条件成下图,根据这幅图,我们应该先求什么?怎样求?

4.学生讨论确定先求5台1小时织布多少米,再求1台1小时织布多少米,教师根据学生汇报书写小标题.

(1)5台织布机1小时织布多少米?

1618=20(米)

(2)每台织布机每小时织布多少米?

205=4(米)

列综合算式解答为:

16085

=205

=4(米)

答:平均每台织布机每小时织布4米.

三、巩固发展.

第一组题目:

条件:书法小组每人每天写8个大字,5个人4天共写了160个大字.

填空:85求的是_______________________;

84求的是_______________________;

1605求的是_____________________;

1604求的是_____________________.

第二组题目:

判断:①85与1604表示的意义相同.( )

②84与1605表示的意义相同.( )

③85与1604表示的意义不同.( )

④84与1605表示的意义不同.( )

第三组题目:

连线题,把意义相同的算式用线连接起来.

84 1604

85 1605

854 1654

四、课堂小结.

通过小结,进一步把连乘应用题与连除应用题进行比较区分,并对两种解题方法再进行理解区分.

五、布置作业.

联系生活实际自编一道连除应用题,要求画线段图并用两种方法解.

连除应用题教案6

教学目的:使学生掌握分数连除应用题的结构及数量关系,学会分析解答分数连除应用题,发展学生的思维能力。

教学过程:

一、复习

1.判断单位1的练习。

(1)黑羊的只数是白羊只数的2/3。

(2)一年级人数占全校人数的1/4。

(3)汽车速度相当于飞机速度的20%。

2.解答教科书第51页的复习题。

光明小学美术组有30人,生物组的人数是美术组的,航模组的人数是生物组的。航模组有多少人?

二、新课

1.教学例4。

(1)指名读题,并引导学生画出线段图。

指名找出已知条件和所求问题。

教师:这道题里有几个数量?需要用几条线段来表示?(引导学生出题里有三个数量,需要有三条线段表示。)

教师:先根据哪个条件来画线段,表示哪个组的人数?(根据生物组人数是美术组的。可以画出表示美术组和生物组人数的线段。)

教师:根据这个条件确定谁为单位1?先画哪个组的人数?(美术组人数为单位1,先画美术组人数。)

教师画一条线段表示美术组的人数后提问:再画哪个组的人数?怎样画?(把表示美术组人数的这条线段平均分成3份,再画一条与其中1份同样长的线段表示生物组的人数。)

教师:现在该画表示哪个组人数的线段?根据哪个条件来画?怎样画?(启发学生说出把表示生物组人数的线段平均分成5份,画出与这样的4份同样长的线段,表示航模组的人数。)

教师:还有什么已知条件没画出来?这道题的问题是什么?谁能在线段图上表示出来?

通过以上一系列提问完成下面的线段图。

(2)引导学生分析解答。

教师:想一想,美术组的人数和哪个组的人数有关系?有什么关系?(引导学生说出美术组人数的是生物组的人数,也就是:美术组的人数=生物组的人数。)

教师:生物组的人数还和哪个组的人数有关系?有什么关系?(生物组人数的是航模组的'人数,也就是:生物组的人数=航模组的人数。)航模组的人数知道吗?(8人。)

教师:根据这些条件,你能找出这道题里数量间的相等关系吗?(美术组人数的是生物组的人数,而生物组人数的是航模组的人数,航模组的人数等于8。)教师边说边在上面等式上注明。如:

教师:根据上面的分析,应该设哪个量为x?(设美术组有x人。)

教师让学生列方程解答,做完后教师再问,我们知道了航模组有8人和航模组人数是生物组的,能不能求出生物组的人数?(因为生物组人数=8,根据分数除法的意义,生物组人数=(8)人。)

教师:我们知道了生物组的人数和生物组的人数是美术组的,能不能求出美术组的人数?

教师:8=?是例4的算术解法,也是为什么我们把例4这样的题目作为分数连除应用题的理由。大家求出美术组的人数跟刚才用方程解法求出的得数是否一样。

2.做教科书第51页做一做的题目。

指名说出线段图的画法,教师在黑板上完成下面的线段图:

全体学生在练习本上解答,订正时指名分析。

三、巩固练习

1.做练习十三的第1题。

让学生独立完成,集体订正时,指名分析题目的数量关系。

2.做练习十三的第2题。

教师先让学生审题,教师问:这道题前面学习的和做过的题目有什么区别?(前面题目中。两个数量之间都是几分之几的关系,这题中有停车场里有36辆小汽车,是大汽数量的4倍。)教师:大家分析题目的数量关系后画线段图。教师指名说出线段图的画法,并在黑板上画出下面的线段图。

教师让学生列式计算,做完后集体订正。

四、小结

教师:今天我们学习的应用题有什么特点?(使学生明确今天学习的应用题是由以前学过的两道分数除法应用题复合成的。)

教师:遇到这样的应用题,分析解答时应该注意什么?(启发学生说出要弄清题里有哪三个数量,它们之间有什么样的关系,找出题目里数量间的相等关系,再确定设哪个量为c,并列出方程或直接用连除算式解答。)

五、作业

练习十三的第3题。

连除应用题教案7

教学目标

1.使学生掌握的基本结构和数量关系,学会列综合算式用两种方法解答连乘应用题.

2.培养学生分析解决实际问题和灵活应用所学知识的能力,学会有条理地叙述思维过程.

3.培养学生主动探索的学习热情,感受数学与生活的密切联系.

教学重点

认识的数量关系,初步学会两种解答方法.

教学难点

理解的两种解题思路.

教学过程

一、提出问题 激疑诱趣.

1.出示【图片参观农业展览】

三年级同学去参观农业展览.他们平均分成2队,每队分成3组,每组15人,一共有多少人?(用两种方法列综合算式解答)

答:一共90人.

2.改变复习题的一个条件和问题后,出示例2.

例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?

教师提问:例题与复习题在条件和问题上有什么变化?

教师导入 :已知条件和问题发生了变化,还能用原来的方法解答吗?这就是我们今天要共同研究的新知识.(板书:应用题)

二、师生共同参与探索.

1.学习两种分析、解答应用题的方法.

出示例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?

(1)自由提问,思考讨论.

教师提问:看到这道题,你想到了什么?有哪些问题?

学生可能提出如下问题,教师可以进行简记:

①这道题已知什么条件,要求什么问题?用线段图如何表示?

②要求每组多少人?必须先求出什么?

③分步列式如何解答?

(2)汇报结果,共同探索.

①教师提问:谁能回答第①个问题?

根据学生回答,出示线段图

②教师提问:谁能解决第②个问题?

结合学生讨论,教学两种解法,并列出综合算式.

第一种解法:要求每组有多少人?必须先求出每队多少人?(借助线段图帮助学生理解)已知条件中告诉我们共有90人,平均分成2队,求每队多少人?就是把90人平均分成2份,每份是多少?用除法计算.知道每队45人,又知道每队分3组,就能求出每组有多少人?

板书:

每队多少人? 综合算式:9023

902=45(人) =453

每组有多少人? =15(人)

453=15(人)

第二种解法:(借助线段图)要想求每组多少人?必须先求出一共多少组?知道每队分3组,分成2队,就是求2个3是多少?用乘法计算.6组对应90人,要求出每组多少人?就是把90平均分成6份,求每份是多少?

板书:

一共多少组? 综合算式: 90(23)

32=6(组) =906

每组多少人? =15(人)

906=15(人)

2.观察比较,归纳概括.

教师提问:观察两种解法在思路上有什么异同?

引导学生说出:相同点是所求的问题一样.不同点是先求的不一样,第一种解法先求的是每组多少人,第二种解法先求一共多少组,所以第一步的解法也就不一样.

3.引发思考,掌握检验方法.

教师提问:同学们,我们已经知道两种解法可以互相检验,除了这种方法外,还可以怎么检验应用题?(小组讨论)

引导学生发现:把已经计算出的结果作为已知条件,进行逆运算,如果最后算出的结果与题目的已知条件相同,说明解答正确.

1532

=452

=90(人)

三、分层练习反馈矫正.

1.独立用两种方法解答,口头检验.

(1)图书馆买来新书240本,平均放在3个书架上,每个书架上放4层,平均每层放多少本?

订正:

答:平均每层放20本.

(2)商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?

2.说出分析过程,列综合算式不计算.

(1)三年级有2个班,每个班有43个学生,一共做纸花258朵,平均每个学生做纸花多少朵?

(2)奶牛场有5个牛棚,每个牛棚里有12头奶牛,一天喂1200千克饲料,平均每头每天喂多少千克饲料?

3.连乘应用题与对比练习.

(1)百货商店卖出3箱西裤,每箱20条,每条21元,一共卖了多少元?

(2)百货商店卖出3箱西裤,每箱20条,一共卖了1260元,每条多少元?

(引导学生发现:与连乘应用题的条件与问题正好相反.)

四、全课小结.

这节课我们学习的是什么知识?(板书:)

教师:对,今天我们学习了的不同解答方法及验算,与上两节学习的连乘应用题是有一定联系的.同学们今后解答应用题时,要特别注意分清题目中的数量关系,运用合适的方法正确解答.

五、布置作业 .

练习二十三的第6题

电池厂生产了7200节电池,每12节装一盒,6盒装一箱,一共可以装多少箱?

练习二十三的第9题

学校给三好学生买奖品,买了2盒钢笔,每盒10枝,一共用去160元.每枝钢笔多少元?

练习二十三的第10题

两个缝纫组做同样的衣服,第一组做34件,第二组做42件,一共用布228米.平均每件衣服用多少米布?

【板书】

探究活动

分糖游戏

活动目的

使学生在动手中体会数学与实际生活的密切联系,进一步理解的数量关系.

【活动内容】

1.布置任务.

某食品公司为宣传产品,给学校送来一批糖果.三年级每班分到150块,想想:先按小组平均分配,再从小组平均分给个人,每人能得到几块?有无剩余?每人是否得到的数量一样?和同学一起议一议.先调查、再计算.如果这150块中有2个品种,又该怎样分配?

2.小组合作,互相交流,做好记录.

3.汇报、反思,通过活动谈谈有什么收获.

【活动建议】

教师为学生准备150块糖或学具,讨论交流后真正让学生分一分,以验证他们开始的设想是否合理.给学生的提示越少越好,为学生提供开放的、结构不良的问题环境(如:平均分后有剩余,剩下的怎么办),更能便于孩子们进行深层思考,体会数学的真正价值.

连除应用题教案8

教学目标

(一)使学生理解连除应用题的数量关系,并会用两种方法解答.

(二)使学生进一步学习用线段图表示应用题的条件和问题.

(三)通过对连乘、连除应用题的对比,学生进一步理解其内在联系及互逆关系.

(四)通过观察、比较、分析,提高学生解答应用题的能力.

教学重点和难点

掌握连除应用题的分析方法是重点,理解连乘、连除应用题的互逆关系是难点.

教学过程设计

(一)复习准备

1.板演.

一种织布机每台每小时织4米布,5台8小时可以织多少米布?(用两种方法解答)

2.全班同时口算:

24×5×8

35×2×9

18×2×5

64÷8÷4

120÷6÷4

160÷5÷8

订正1题时,说出两种不同的解题思路.

(二)学习新课

1.新课引入.

复习题改为:一种织布机5台8小时织布160米,平均每台每小时织多少米布?我们今天要学习的内容就是解像这样的应用题.(板书:应用题)

2.出示例2.

一种织布机5台8小时织160米布,平均每台每小时织布多少米?

(1)观察、比较,例2与复习题有什么联系?

(通过观察比较可以看出:复习题中的条件是例2的问题,复习题中的问题是例2的条件.)

说明这两种应用题有着密切的联系.

(2)怎样用线段图表示已知条件和问题?在老师的引导下画出:

(3)要求每台每小时织多少米布,要先求什么?再求什么?

(根据题意,要求每台每小时织多少米布,可以先求出每台织布机8小时织多少米布,再求每台每小时织多少米布.)

(4)怎样分步列式计算?在学生回答的同时,教师板书:

①每台织布机8小时织多少米布?

160÷5=32(米)

②每台织布机每小时织多少米布?

32÷8=4(米)

(5)你能用综合算式解答吗?(独立做在本子上)

160÷5÷8 (每台8小时)

=32÷8(每台1小时)

=4(米)

答:每台织布机每小时织4米布.

让学生叙述解题思路,说出每步求的是什么.

(6)这道题还可以怎样解答?要先算什么?怎样用线段图表示条件和问题?

小组讨论,阅读课本第10页.

在讨论、自学的基础上,把分步列式的标题填在书上,并独立列出综合算式解答.

集体交流说思路.

160÷8÷5 5台1小时)

=20÷5每台1小时)

=4(米)

答:平均每台织布机每小时织4米.

3.师生共同总结.

(1)今天学习的是什么应用题?(今天学习的是连除应用题)

教师把“连除”二字板书在课题的前边,即连除应用题.

(2)通过刚才用不同的方法分析这道题,你发现这类连除应用题有什么特点吗?(题中的160米既与5台织布机有关系,也与8小时有关系.)

教师在学生回答的基础上,加以概括:

这类连除应用题的特点是:总量与两个变化的量有关系,是随着两个变量的变化而变化.正如同学们所说,160米既与5台织布机有关系,也与8小时有关系,因此要求每台每小时织多少米布,既可以先求每台8小时织多少米,又可以先求5台1小时织多少米.由于思路不同,就有不同的解法,重在分析数量关系.

4.对比.

(1)1辆汽车1天运货20吨,4辆汽车5天运货多少吨?

(2)4辆汽车5天共运货400吨,1辆汽车1天运货多少吨?

同学们在独立解答的基础上,二人讨论,这两道题有什么联系?有什么区别?

订正:

(1)20×5×4 2)40÷4÷5

=100×4 =100÷5

=400(吨) =20(吨)

(两道题的区别:(1)题是连乘应用题,(2)题是连除应用题.这两道题又有内在联系,(1)题的已知条件是(2)题的问题,(1)题的问题是(2)题的已知条件.)

教师给以肯定后,再进一步明确说明:连乘和连除这两种应用题是互逆关系,应用这种互逆关系还可以对应用题进行检验.

(三)巩固反馈

1.独立计算基本题.

(1)3辆汽车4次可以运288筐苹果,1辆汽车1次可以运多少筐苹果?

(2)光明中学的团员平整操场,35人3小时平整了1260平方米,平均每人每小时平整多少平方米?

2.叙述条件有变化.

一份稿件共960页,8个打字员共打12小时才完成,平均每个打字员每小时可以打字几页?

3.改编题.

每只鸡每天吃饲料4500克,照这样计算,6只鸡5天吃饲料多少千克?

把上题改为用除法解答的应用题.

4.变化提高题.

4台碾米机3小时可以碾米4800千克,1台碾米机8小时可以碾米多少千克?

(如有困难可稍加提示;从问题入手分析,要求1台8小时碾米多少千克,就要先求出1台1小时碾米多少千克.)

(四)作业

练习三第1~5题.

课堂教学设计说明

本节课学习连除应用题的要点是总量与两个变化的量有关系,并随着两个变量的变化而变化,因此也可以用两种方法解答.与前面学过的连乘应用题是互逆关系.

新课分为三个层次.

第一层是在教师引导下,通过画图表示题里的条件和问题,重点分析第一种思路和方法.

第二层是通过学生自学课本,在小组讨论的基础上,明确线段图中的数量关系,自己类推出第二种思路和方法.在此基础上共同总结出连除应用题的特点.

第三层是通过对连乘、连除应用题的对比,明确这两种应用题之间的内在联系及其互逆关系.

练习的设计围绕重点,有基本题、变化题、改编题.为以后学习稍复杂的归一问题打基础.

板书设计

连除应用题

例2 一种织布机5台8小时织160米布,

平均每台每小时织多少米布?

(1)每台织布机8小时织布多少米?

160÷5=32(米)

(2)每台织布机1小时织布多少米?

32÷8=4(米)

综合算式:

160÷5÷8

=32÷8

=4(米)

答:平均每台每小时织布4米.

对比(1)1辆汽车1天运货20吨,照这样计算,4辆汽车 5天运货多少吨?

20×4×5 20×5×4

=80×5 =100×4

=400(吨) =400(吨)

答:4辆汽车5天运货400吨

对比(2)4辆汽车5天共运货400吨,平均1辆汽车 1次运货多少吨?

400÷4÷5 400÷5÷4

=100÷5 =80÷4

=20(吨) =20(吨)

答:平均1辆汽车1天运货20吨.

第2篇:《连除应用题》教案

教学内容:教科书第102、103页上的内容,练习二十三的第1-4题。

教学目的:使学生初步了解连除应用题的基本结构及数量关系,通过不同的分析思路进行解答。同时学习解题的检验方法,进一步提高学生的分析和解题能力。

教学重点:了解连除应用题的基本结构及数量关系。

教学难点:了解连除应用题的数量关系,并通过不同的分析思路进行解答。

教学关键:通过不同数量关系、分析思路进行解答。

教学过程

一、复习。

1、根据条件,提出问题进行解答。

(1)三年级同学去参观农业展览,他们平均分成2队,每队分成3组?

(2)三年级同学去参观农业展览。他们每队有3组,每组有15人,?

(3)三年级90个同学去参观农业展览,他们平均分成2队,?

(4)三年级同学去参观农业展览,他们每队有45人,平均分成3组,?

2、三年级同学去参观农业展览,他们平均分成2队,每队分成3组,每组15人,一共有多少人?

教师引导学生小结后,把复习中的连乘应用题改变一个条件和问题,使它成为例2导入新课。

二、新授。

l、教学例2。三年级同学参观农业展览。把90人平均分成2队,每队平均分成3组,每组有多少人?

(1)读题,结合线段图理解题意。

训练学生离开原题目,看线段图复述题意。参观农业展览的三年级同学90人平均分成2队,每队平均分成3组,每组有多少人?

(2)引导学生结合线段图进行思路分析。

①从条件上分析。提问:

(a)题目中哪些条件可以解诀哪些问题?

(b)要求每组有多少人,应先求什么?

学生回答时,教师引导学生得出以下两个方面的内容:

(a)根据已知条件,把90人平均分成2队,可以求出每队有多少人。把求出的每队有(90÷2)人当作条件与已知的每队平均分成3组,就能求出每组有多少人。因此要求每组有多少人,必须先求出每队有多少人。

(b)根据已知条件,平均分成2队,每队有3组,可以求出一共有多少组,把求出的一共有(3×2)组当作条件与总人数90人,就能求出每组有多少人。因此要求每组有多少人,可以先算一共分成多少组。

从问题上分析。提问:

(a)要求每组有多少人,应需要哪两个条件?

(b)要求出问题,应先求出什么?

教师引导学生讨论回答,得出以下两个方面的内容:

(a)要求每组有多少人?需要每队人数与每队组数这两个条件,而已知每队平均分成3组,所以应先求出每队有多少人。

(b)要求每组有多少人?也可以从总人数与总组数这两个条件出发。已知总人数90人,所以应先求一共分成多少组。

(3)教师小结以上分析方法,与学生共同探讨得出以下两种不同的解答方法。

①解法一:(a)平均每队有多少人?

90÷2=45(人)

(b)平均每组有多少人?

45÷3=15(人)

综合列式:90÷2÷3

=45÷3

=15(人)答:平均每组15人。

②解法二:(a)一共分了多少组?

3×2=6(组)

(b)平均每组有多少人?

90÷6=15(人)

综合列式:90÷(3×2)

=90÷6

=15(人)答:平均每组15入。

2、指导解题的检验方法。

(1)引导想一想:这道题除了用一种解法检验另一种解法以外,还可以怎样检验?

(2)指导学生用问题与条件交换的方法进行检验。如:

想:已经算出每组有15人,又知每队平均分成3组,可能算出每队的人数。(1)15×3=45(人)

已经算出每队有45入,已知平均分成2队,可以算出一共有多少人、(2)45×2=90(人)

这样算得的结果和题里的已知条件相同,说明解答正确。

三、巩固。完成教科书第103页的做一做题目。

四、作业。做练习二十三的第1-4题。

(3)归一应用题

教学内容:教科书第107页、109页上的内容,练习二十四的第1、2、4题。

教学目的:使学生初步掌握正、反归一应用题的数量关系、结构特征及解题关键,学会用综合算式解答正、反归一应用题,逐步培养学生的分析和解答应用题的能力。

教学重点:掌握正、反归一应用题的数量关系、结构特征。

教学难点:用综合算式解答正、反归一应用题。

教学关键:逐步培养学生的分析和解答应用题的能力。

教学过程

一、复习。

1、设问。我校开展读书活动,添置一批书架,要买这样的5个需要多少元?这道题能解答吗?为什么?(要求买5个书架需要多少元,就是求总价,必须知道单价和数量,数量题目已经告诉我们了,单价却没有告诉,所以不能解答。)

2、解答下面各题,并说出题中的数量关系。

(1)书架每个25元,买5个要用多少元?(已知单价和数量求总价,就用单价乘以数量。)

(2)书架每个25元,200元可以买多少个书架?(已知单价和总价求数量,就用总价除以单价。)

3、求下列问题,需要知道哪两个条件?

(1)3小时行多少千米?(每小时行多少千米与行了几小时)

(2)需要几小时完成?(做多少个零件与每小时做多少个)

二、新授。

1、引言。复习题中第1小题书架的单价已经直接告诉我们,现在老师把它改为间接条件,变为两步计算应用题,这就是要学习的新内容例3。

上一阶段,我问学习了连乘,连除应用题,今天学习的例3又不同于这两类应用题的乘、除两步计算应用题。

2、教学例3。学校买3个书架,一共用75元。照这样计算,买5个书架要用多少元?

(1)读题,审题。

①摘录条件和问题:

3个书架共用--75元

5个书架--?元

②训练学生根据摘录的条件和问题复述题意。

结合复述题意说明照这样计算的意思是每个书架按照同样的价钱计算。

(2)画线段图示意并分析题意。

3个书架用75元,用线段图表示。

买5个书架用多少元,要用另一条线段表示:

接着,引导学生看线段图进行分析:

①要求买5个书架要用多少元,必须知道哪两个条件?(要求总价必须知道单价与数量。)

③已知数量买5个,所以应先求什么?(单价)

③怎样求出单价?

议论后,让学生在黑板上的第一条线段图上标出问题。

(3)分步列式解答:

①每个书架多少元?75÷3=25(元)

②5个书架多少元?25×5=125(元)

答:买5个书架要用125元。

分步列式计算后,让学生在黑板上画的第二条线段图上标出总价。

(4)引导学生列综合算式解答,并说出每步算式表示的意思。

75÷3×5

=25×5

=125(元)

(5)让学生检验计算结果是否正确。

3、练习:第107页上做一做题目。

小结:从以上的例题与做一做题目可以看到,今天学习的解题方法是:根据前两个已知条件用平均分方法来出单位数量,即每份数、(具体地说,例题中的1个书架多少元?做一做题目中的1小时行多少千米?)然后以它为标准(照这样计算)再用乘法求出有几个这样的单位数量是多少。

4、教学例4。学校买3个书架,一共用75元。照这样计算,200元可以买多少个书架?

(1)读题,审题。①摘录条件和问题:

3个书架共用--75元

?个书架--200元

②训练学生根据摘录的条件和问题复述题意。

(2)指导画线段图。

可让学生利用例3的线段图来改画。其中第一条不变,擦去第二条上的分段点;将5个书架的5用?替换,?元的?用200元替换。然后引导学生想,200元买的书架要多一些,所以第二条线段要加长一些,要成为:

(3)引导学生看线段图分析,同时在第一条和第二条的线段图上分别标上所求的问题。

思考:要求200元可以买多少个书架,要先算什么?

①每个书架多少元?75÷3=25(元)

③200元可以买多少个书架?200÷25=8(个)

答:200元可以买8个书架。

用综合列式:注意为什么要加上小括号?(要改变其运算顺序,必须加上小括号。)

200÷(75÷3)

=200÷25

=8(个)

(4)让学生说说怎样检验计算结果是否正确。

5、引导比较例

3、例4的相同点和不同点。

(1)相同点:两道题的前两个已知条件完全相同。解题的第一步都是除法求出一个单位数量是多少?(一个书架多少元。)

(2)不同点:两个例题中的第三个条件和问题不同。例3求出一个单位数量是多少后,用乘法来出所求的问题;例4求出一个单位数量是多少后,用除法求出所求的问题。

三、巩固。完成教科书第108页上的做一做题目。

(1)读题,解析照这样计算。

(2)学生独立做题:先分步列式,再列综合算式。

四、总结。今天,学习的例

3、例4及两道做一做题目中,都有一个共同的特点:第一步用除法求出一个单位数量是多少,(如例

3、例4的求一个书架多少元)然后以这个单位数量为标准,(即题中的照这样计算)根据题目的要求用乘法或除法求出所要求的问题。有这样解题特征的应用题,通常是叫做归一应用题。

五、作业。做练习二十四的第1、2、4题。

第3篇:连除应用题

连除应用题

教学目标:

1、理解并掌握连除应用题的数量关系。

2、通过举实际例子亲身体验并感受连除应用题的数量关系,并在亲身体验中通过合作、交流得出连除应用题的两种计算方法。

3、能用两种方法正确解答应用题。

4、通过加强与生活的联系,感受到生活来源于生活,又用于生活。

教学重点:

掌握数量关系,并能用两种方法正确列式计算。

教学难点:

理解数量关系并能说出想法。

教学关键:

通过举实际例子体验数量关系。

教学过程:

一、引入

1、谈话:

(1)(拿起粉笔)工厂里生产出一支一支的粉笔,卖给我们的学校是不是一支一支拿过来呢?(得出先装成盒再装成箱)

(2)生举例子:生活中这样的例子还有很多很多,你们还能举吗?(举出不同情况的例子)

2、动手操作、加深印象:把12支铅笔平均分成2份,每份是几?把每份6支平均分成3份,每份是几?

小结

未完,继续阅读 >

第4篇:连除应用题练习

连除应用题练习

通过练习,使学生进一步掌握连除应用题的数量关系和解题方法,提高学生的计算能力和应用题的解题能力。以下是连除应用题练习,欢迎阅读。

1、一座楼房有5层楼,每层有12户家庭,每个家庭每天丢弃2个塑料袋。这座楼所有家庭一天共丢弃多少个塑料袋?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

2、一些学生为布置礼堂做纸花。每6位同学一小组,每位同学做12朵花,20个小组一共做了多少朵花?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

3、一个单元有12户人家,每家每天订3瓶牛奶,每瓶牛奶2元,这个单元每天订奶的总价是多少?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

4、参加体操训练的有5人,参加篮球训练的是体操人数的6倍,参加长跑训练的人数是参加篮球训

未完,继续阅读 >

第5篇:连乘连除应用题

连乘连除、乘除混合运算应用题:

1、幼儿园买来3箱毛巾,每箱2条,每条5元,一共多少元?

2、学校门口摆放着2行月季花,每行6盆,如果重新摆放,每行3盆,能摆几行?

3、有2箱矿泉水,每箱有8瓶,如果把这些矿泉水分给4个班,平均每个班分几瓶?

4、同学们在门口摆了6排月季花,每排3盆,摆了9盆蝴蝶花,月季花的盆数是蝴蝶花的几倍?

5、有24瓶水平均分给4组小朋友,每组有3人,平均每人几瓶水?

6、同学们排队做操,每6人一组,可以分成6组,每9人一组,可以分成几组?

7、学校买了3盒钢笔,每盒8支,分给6位老师,每个老师分几支?

8、一些水果分给6个小朋友,每个小朋友分2个,如果分给4个小朋友,每个小朋友分几个?

9、小丽5分钟做20道题,小明3分钟做15道题,谁做的快?

未完,继续阅读 >

下载连除应用题教案word格式文档
下载连除应用题教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文