第1篇:用比例知识解答应用题教案
用比例知识解答应用题教案
用比例知识解答应用题教案
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学难点
通过复习,使学生能够利用正反比例的'意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.
(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?
1.学生读题,独立解答.
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.
(二)反馈.
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件.实际每天加工2100个零件.实际用了多少天就完成了任务?
2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?
第2篇:《用比例的知识解答应用题》课件
《用比例的知识解答应用题》课件
本节课使学生进一步认识正反比例应用题的特点,理解并掌握解答正反比例应用题的解题思路和解题方法。下面是小编收集整理的《用比例的知识解答应用题》课件,希望对您有所帮助!
教学目的
1.使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.培养学生的分析能力、综合能力以及判断推理能力.
教学重点
使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.
(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?
1.学生读题,独立解答.
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.
(二)反馈.
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的.小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.生产小组加工一批零件,原计划用14天,平均每天加工1500个零件.实际每天加工2100个零件.实际用了多少天就完成了任务?
2.一个编织组,原来30人10天生产1500只花篮,现在增加到80人,按原来的工效,生产6000只花篮需要多少天?
第3篇:用比例知识解答应用题 教学设计资料
用比例知识解答应用题 教学设计资料
教学目的1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系。
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题。
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力。教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题。教学过程
一、复习准备。
下面每题中的两种量成什么比例关系?(1)速度一定,路程和时间。
(2)总价一定,每件物品的价格和所买的数量。(3)小朋友的年龄与身高。
(4)正方体每一个面的面积和正方体的表面积。(5)被减数一定,减数和差。
第 1 页 谈话引入:我们今天运用正反比例的知识来解决实际问题。(板书:用比例知识解应用题)
第4篇:用比例知识解答应用题(人教版六年级教案设计)
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.
(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
第5篇:用比例知识解答应用题人教版六年级教案设计大全(13篇)
编写教案需要注意语言简洁明了、逻辑严密、条理清晰的原则。对于每个教学环节,教案的编写需考虑时间的分配,保证教学进度的合理推进。请大家根据自己的学科和教学内容,选择适合自己的教案范例进行参考和应用。
用比例知识解答应用题人教版六年级教案设计篇一
(一)教学例5(用比例解答下题)。
1.学生读题,独立解答.。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
(二)反馈.。
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.。
四、课堂总结.。
通过这堂课的学习,你有什么收获?
五、课后作业.。
用比例知识解答应用题人教版六年级教案设计篇二
1、使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件
第6篇:用比例知识解答应用题人教版六年级教案设计(专业20篇)
教案还应包含教学资源的准备和教学活动的安排,确保教学过程的顺利进行。教案的编写需要与学校的教学大纲和教学要求相匹配,确保教学的有效性和可操作性。如果你需要一些教案的参考资料,可以看看以下这些范文,或许会有所帮助。
用比例知识解答应用题人教版六年级教案设计篇一
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习。
1.说说正、反比例的意义。
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从a地到b地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出
第7篇:比例应用题教案
例1.甲﹑乙两列火车同时从两地相向开出,已知甲列车每小时行驶120千米,乙列车每小时行驶90千米。
①甲﹑乙两车的速度比是多少?
②甲﹑乙两车相遇时所行的路程比是多少?
③甲﹑乙两车各自行完全程所用的时间比是多少?
④试分析①﹑②﹑③之间的关系。
解 ①甲车速度:乙车速度=120:90=4:3.②设甲﹑乙两列火车x小时相遇,相遇时,甲车所行的路程:乙车所行的路程=(120x):(90x)=4:3(x是相遇时间,一定不为0)③再设两地之间的路程为y千米。
甲车行完全程所用的时间:乙车行完全程所用的时间=
y120:y90=3:4(y是两地之间的路程,一定不为0)。
④从上面可以看出,速度比等于在相同时间内所行的路程的比;速度比等于时间比的反比;时间比等于路程比的反比。
例2.粮食加工厂第一车间有3台碾米机,4.5
第8篇:用比例解决应用题说课稿
用比例解决应用题说课稿
数学与社会密切相联,现实生活中蕴含着着大量的数学信息,数学在现实生活中有着广泛的应用。2011版《数学课程标准》在总目标中提到“要引导学生体会数学与生活之间的联系,运用数学的思维方式进行思考,增强提出问题、分析解决问题的能力。
《用比例解应用题》是人教版实验教材第十二册p59—60页的内容,属于“数与代数”领域中“数的概念”的综合应用。本课时内容既是“归一、归总”等乘除法应用题的延续和深化,又是学习7——9年级相关知识的重要基础。教材借助例5和例6分别呈现了运用正反比例的意义来解答应用题的过程;展示图中男、女同学的"思维交流”,点明了“一题可以多解”,勾起学生对已有知识经验的回忆,体现知识之间的联系。通过本节课的教学力求加深学生对正反比例意义的理解,通过正确判断相关联量的比