高中数学函数的应用综合检测试题

精品范文 时间:2024-04-14 07:13:13 收藏本文下载本文

第1篇:高中数学函数的应用综合检测试题

高中数学函数的应用综合检测试题

第3章函数的应用综合检测试题(含解析新人教A版必修1)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。

第Ⅰ卷(选择题 共60分)

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.(2013~2014学年度河北孟村回民中学月考试题)若函数f(x)在[a,b]上连续,且同时满足f(a)f(b)<0,f(a)f(a+b2)>0.则()

A.f(x)在[a,a+b2]上有零点 B.f(x)在[a+b2,b]上有零点

C.f(x)在[a,a+b2]上无零点 D.f(x)在[a+b2,b]上无零点

[答案] B

[解析] 由已知,易得f(b)f(a+b2)<0,因此f(x)在[a+b2,b]上一定有零点,但在其他区间上可能有零点,也可能没有零点.

2.函数y=1+1x的零点是()

A.(-1,0) B.x=-1

C.x=1 D.x=0

[答案] B

3.下列函数中,增长速度最快的是()

A.y=20x B.y=x20

C.y=log20x D.y=20x

[答案] D

4.已知函数f(x)=2x-b的零点为x0,且x0(-1,1),那么b的取值范围是()

A.(-2,2) B.(-1,1)

C.(-12,12) D.(-1,0)

[答案] A

[解析] f(x)=2x-b=0,得x0=b2,

所以b2(-1,1),所以b(-2,2).

5.函数f(x)=ax+b的零点是-1(a0),则函数g(x)=ax2+bx的零点是()

A.-1 B.0

C.-1和0 D.1和0

[答案] C

[解析] 由条件知f(-1)=0,b=a,g(x)=ax2+bx=ax(x+1)的零点为0和-1.

6.二次函数f(x)=ax2+bx+c(xR)的部分对应值如下表:

x -3 -2 -1 0 1 2 3 4

y 6 m -4 -6 -6 -4 n 6

由此可以判断方程ax2+bx+c=0的两个根所在的区间是()

A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)

C.(-1,1)和(1,2) D.(-,-3)和(4,+)

[答案] A

[解析] ∵f(-3)=6>0,f(-1)=-4<0,

f(-3)f(-1)<0.

∵f(2)=-4<0,f(4)=6>0,

f(2)f(4)<0.方程ax2+bx+c=0的两根所在的区间分别是(-3,-1)和(2,4).

7.用二分法求方程f(x)=0在区间(1,2)内的唯一实数解x0时,经计算得f(1)=3,f(2)=-5,f(32)=9,则下列结论正确的是()

A.x0(1,32) B.x0=-32

C.x0(32,2) D.x0=1

[答案] C

[解析] 由于f(2)f(32)<0,则x0(32,2).

8.在一次数学试验中,应用图形计算器采集到如下一组数据:

x -2.0 -1.0 0 1.00 2.00 3.00

y 0.24 0.51 1 2.02 3.98 8.02

则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()

A.y=a+bx B.y=a+bx

C.y=ax2+b D.y=a+bx

[答案] B

[解析] 代入数据检验,注意函数值.

9.设a,b,k是实数,二次函数f(x)=x2+ax+b满足:f(k-1)与f(k)异号,f(k+1)与f(k)异号.在以下关于f(x)的零点的'说法中,正确的是()

A.该二次函数的零点都小于k

B.该二次函数的零点都大于k

C.该二次函数的两个零点之间差一定大于2

D.该二次函数的零点均在区间(k-1,k+1)内

[答案] D

[解析] 由题意得f(k-1)f(k)<0,f(k)f(k+1)<0,由零点的存在性定理可知,在区间(k-1,k),(k,k+1)内各有一个零点,零点可能是区间内的任何一个值,故D正确.

10.(2013~2014山东梁山一中期中试题)若函数f(x)=x3-x-1在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算列表如下

x 1 1.5 1.25 1.375 1.3125

f(x) -1 0.875 -0.2969 0.2246 -0.05151

那么方程x3-x-1=0的一个近似根(精确度为0,1)为()

A.1.2 B.1.3125

C.1.4375 D.1.25

[答案] B

[解析] 由于f(1.375)>0,f(1.3125)<0,且

1.375-1.3125<0.1,故选B.

11.(2013~2014河北广平县高一期中试题)“龟兔赛跑”讲过了这样一个故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点,用S1、S2分别表示乌龟和兔子所行的路线,t为时间,则图中与故事情节相吻合的是()

[答案] D

12.已知函数f(x)的图象如图,则它的一个可能的解析式为()

A.y=2x B.y=4-4x+1

C.y=log3(x+1) D.y=x13 (x0)

[答案] B

[解析] 由于过(1,2)点,排除C、D;由图象与直线y=4无限接近,但到达不了,即y<4知排除A,选B.

第Ⅱ卷(非选择题 共90分)

二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)

13.如函数f(x)=x2+mx+m+3的一个零点为0,则另一个零点是________.

[答案] 3

[解析] 代入x=0得m=-3.

f(x)=x2-3x,则x2-3x=0得x1=0,x2=3

因此另一个零点为3.

14.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是________.

[答案] (2,3)

[解析] 设f(x)=x3-3x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).

15.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,…,x2013,则x1+x2+…+x2013=________.

[答案] 0

[解析] 由于奇函数图象关于原点对称,因此零点是对称,所以x1+x2+…+x2013=0.

16.已知y=x(x-1)(x+1)的图象如图所示.令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解叙述正确的是________.

①有三个实根;

②x>1时恰有一实根;

③当0<x<1时恰有一实根;

④当-1<x<0时恰有一实根;

⑤当x<-1时恰有一实根(有且仅有一实根).

[答案] ①⑤

[解析] f(x)的图象是将函数y=x(x-1)(x+1)的图象向上平移0.01个单位得到.故f(x)的图象与x轴有三个交点,它们分别在区间(-,-1),(0,12)和(12,1)内,故只有①⑤正确.

三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)

17.(本小题满分10分)求函数f(x)=2x+lg(x+1)-2的零点个数.

[解析] 解法一:∵f(0)=1+0-2=-1<0,f(2)=4+lg3-2=2+lg3>0,

函数f(x)在区间(0,2)上必定存在零点.

又f(x)=2x+lg(x+1)-2在区间(-1,+)上为增函数,故函数f(x)有且只有一个零点.

解法二:在同一坐标系内作出函数h(x)=2-2x和g(x)=lg(x+1)的图象,如图所示,由图象知y=lg(x+1)和y=2-2x有且只有一个交点,即f(x)=2x+lg(x+1)-2有且只有一个零点.

18.(本小题满分12分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?

[解析] 设每天从报社买进x份报纸,每月获得的总利润为y元,则依题意有

y=0.10(20x+10250)-0.1510(x-250)

=0.5x+625,x[250,400].

该函数在[250,400]上单调递增,所以x=400时,ymax=825(元).

答:摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元.

19.(本小题满分12分)某公司今年1月份推出新产品A,其成本价为492元/件,经试销调查,销售量与销售价的关系如下表:

销售价x(元/件) 650 662 720 800

销售量y(件) 350 333 281 200

由此可知,销售量y(件)与销售价x(元/件)可近似看作一次函数y=kx+b的关系(通常取表中相距较远的两组数据所得的一次函数较为精确).

试问:销售价定为多少时,1月份利润最大?并求最大利润和此时的销售量.

[解析] 由表可知350=650k+b,200=800k+bk=-1,b=1000,

故y=-x+1000.

设1月份利润为W,则

W=(x-492)(-x+1000)=-x2+1492x-492000=-(x-746)2+64516,

当x=746,Wmax=64516,此时销售量为1000-746=254件,即当销售价定为746元/件时,1月份利润最大,最大利润为64516元,此时销售量为254件.

20.(本小题满分12分)用二分法求f(x)=x3+x2-2x-2在x的正半轴上的一个零点(误差不超过0.1).

[解析] 显然f(2)=23+22-22-2=6>0.

当x>2时f(x)>0,又f(0)=-2<0,f(1)=-2<0,

故f(x)在(1,2)区间内有零点.

区间 中点值 中点函数值

[1,2] 1.5 0.625

[1,1.5] 1.25 -0.984

[1.25,1.5] 1.375 -0.260

[1.375,1.5] 1.438 0.165

[1.375,1.438]

因为|1.375-1.438|=0.063<0.1,故f(x)=x3+x2-2x-2的零点为x=1.4.

21.(本小题满分12分)某城市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,但不超过40小时.设在甲家租一张球台开展活动x小时的收费为f(x)元(1540),在乙家租一张球台开展活动x小时的收费为g(x)元(1540).

(1)求f(x)和g(x);

(2)问:小张选择哪家比较合算?为什么?

[解析] (1)f(x)=5x(1540);

g(x)=90,1530,2x+30,30<x40.

(2)由f(x)=g(x),得1530,5x=90或30<x40,5x=2x+30,

即x=18或x=10(舍).

当15x<18时,f(x)-g(x)=5x-90<0,

即f(x)<g(x),应选甲家;

当x=18时,f(x)=g(x),即可以选甲家也可以选乙家.

当18<x30时,f(x)-g(x)=5x-90>0,

即f(x)>g(x),应选乙家.

当30<x40时,

f(x)-g(x)=5x-(2x+30)=3x-30>0,

即f(x)>g(x),应选乙家.

综上所述:当15x<18时,选甲家;

当x=18时,可以选甲家也可以选乙家;

当18<x40时,选乙家.

22.(本小题满分12分)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.

(1)求每年砍伐面积的百分比.

(2)到今年为止,该森林已砍伐了多少年?

(3)今后最多还能砍伐多少年?

[分析] (1)根据10年的砍伐面积为原来的一半,列方程求解.

(2)根据到今年为止,森林剩余面积为原来的22,列方程求解.

(3)求出第n年后森林剩余面积,根据森林面积至少要保留原面积的14列不等式求解.

[解析] (1)设每年砍伐面积的百分比为x(01),则a(1-x)10=12a,即(1-x)10=12.

解得x=1-(12)110 .

(2)设经过m年剩余面积为原来的22,则

a(1-x)m=22a,即(12)m10 =(12)12 ,

m10=12,解得m=5.

故到今年为止,已砍伐了5年.

(3)设从今年开始,以后砍伐了n年,

则n年后剩余面积为22a(1-x)n.

令22a(1-x)n14a,即(1-x)n24,

(12)n10 (12)32 ,n1032,解得n15.

故今后最多还能砍伐15年.

[点评] 通过本题,重点强调高次方程、指数不等式的解法.对于高次方程应让学生明确,主要是开方运算;对于指数不等式,强调化为同底,应用指数函数的单调性求解,本题中化为同底是一大难点.

第2篇:高中数学函数应用检测试题及答案解析

高中数学函数应用检测试题及答案解析

一、选择题(本大题共10个小题,每小题5分,共50分)

1.函数f(x)=x2-3x-4的零点是 ()

A.(1,-4) B.(4,-1)

C.1,-4 D.4,-1

解析:由x2-3x-4=0,得x1=4,x2=-1.

答案:D

2.今有一组实验数据如下表所示:

t 1.99 3.0 4.0 5.1 6.12

u 1.5 4.04 7.5 12 18.01

则体现这些数据关系的最佳函数模型是 ()

A.u=log2t B.u=2t-2

C.u=t2-12 D.u=2t-2

解析:把t=1.99,t=3.0代入A、B、C、D验证易知,C最近似.

答案:C

3.储油30 m3的油桶,每分钟流出34 m3的油,则桶内剩余油量Q(m3)以流出时间t(分)为自变量的函数的定义域为 ()

A.[0,+) B.[0,452]

C.(-,40] D.[0,40]

解析:由题意知Q=30-34t,又030,即0 30-34t30,040.

答案:D

4.由于技术的提高,某产品的成本不断降低,若每隔3年该产品的价格降低13,现在价格为8 100元的产品,则9年后价格降为 ()

A.2 400元 B.900元

C.300元 D.3 600元

解析:由题意得8 100(1-13)3=2 400.

答案:A

5.函数f(x)=2x+3x的零点所在的一个区间是 ()

A.(-2,-1) B.(-1,0)

C.(0,1) D.(1,2)

解析:f(-1)=2-1+3(-1)=12-3=-520,

f(0)=20+30=10.

∵y=2x,y=3x均为单调增函数,

f(x)在(-1,0)内有一零点.

答案:B

6.若函数y=f(x)是偶函数,其定义域为{x|x0},且函数f(x)在(0,+)上是减函数,f(2)=0,则函数f(x)的零点有 ()

A.唯一一个 B.两个

C.至少两个 D.无法判断

解析:根据偶函数的单调性和对称性,函数f(x)在(0,+)上有且仅有一个零点,则在(-,0)上也仅有一个零点.

答案:B

7.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为 ()

A.0 B.1

C.2 D.3

解析:由f(x)=0,得x0,x2+2x-3=0或x0,-2+lnx=0,

解之可得x=-3或x=e2,

故零点个数为2.

答案:C

8.某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元 (不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费

()

A.1.00元 B.0.90元

C.1.20元 D.0.80元

解析:y=0.2+0.1([x]-3),([x]是大于x的最小整数,x0),令x=55060,故[x]=10,则y=0.9.

答案:B

9.若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是 ()

A.f(x)=4x-1 B.f(x)=(x-1)2

C.f(x)=ex-1 D.f(x)=ln(x-12)

解析:令g(x)=0,则4x=-2x+2.画出函数y1=4x和函数y2=-2x+2的图像如图,可知g(x)的零点在区间(0,0.5)上,选项A的零点为0.25,选项B的零点为1,选项C的零点为0,选项D的零点大于1,故排除B、C、D.

答案:A

10.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图像,实线表示y=f(x ),虚线表示y=g(x),其中可能正确的是 ()

解析:A选项中即时价格越来越小时,而平均价格在增加,故不对,而B选项中即时价格在下降,而平均价格不变化,不正确.D选项中平均价格不可能越来越高,排除D.

答案:C

二、填空题(本大题共4小题,每小题5分,共20分)

11.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是________.

解析:f(x)=x3-2x-5,

f(2)=-10,f(3)=160,f(2.5)=5.6250,

∵f(2)f(2.5)0,

下一个有根区间是(2,2.5).

答案:(2,2.5)

12.已知mR时,函数f(x)=m(x2-1)+x-a恒有零点,则实数a的取值范围是________.

解析:(1)当m=0时,

由f(x)=x-a=0,

得x=a,此时aR.

(2)当m0时,令f(x)=0,

即mx2+x-m-a=0恒有解,

1=1-4m(-m-a)0恒成立,

即4m2+4am+1 0恒成立,

则2=(4a)2-440,

即-11.

所以对mR,函数f(x)恒有零点,有a[-1 ,1].

答案:[-1,1]

13.已知A,B两地相距150 km,某人开汽车以60 km/h的速 度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是________.

解析:从A地到B地,以60 km/h匀速行驶,x=60t,耗时2.5个小时,停留一小时,x不变.从B地返回A地,匀速行驶,速度为50 km/h,耗时3小时,故x=150-50(t-3.5)=-50t+325.

所以x=60t,02.5,150, 2.53.5,-50t+325, 3.56.5.

答案 :x=60t,02.5150, 2.53.5-50t+325 3.56.5

14.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用 电价格表

高峰月用电量(单位:千瓦时) 高峰电价(单位:元/千瓦时)

50及以下的部分 0.568

超过50至200的部分 0.598

超过200的部分 0.668

低谷时间段用电价格表

低谷月用电量(单位:千瓦时) 低谷电价(单位:元/千瓦时)

50及以下的部分 0.288

超过50至2 00的部分 0.318

超过200的部分 0.388

若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元(用数字作答).

解析:高峰时段电费a=500.568+(200-50)0.598=118.1(元).

低谷时段电费b=500.288+(100-50)0.318=30.3(元).故该家庭本月应付的电费为a+b=148.4(元).

答案:148.4

三、解答题(本大题共4小题,共50分)

15.(12分)有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金x万元的关系可由经验公式给出:M= 14x,N=34x-1(x1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,为获得最大利润,对甲、乙两种商品 的资金投入分配应是多少? 共能获得多大利润?

解:设投入乙种商品的资金为x万元,则投入甲种商品的资金为(8-x)万元,共获得利润

y=M+N=14(8-x)+34x-1.

令x-1=t(07),则x=t2+1,

y=14(7-t2)+34t=-14(t-32)2+3716.

故当t=32时,可获最大利润3716万元.

此时,投入乙种商品的.资金为134万元,

甲种商品的资金为194万元.

16.(12分)判断方程2ln x+x-4=0在(1,e)内是否存在实数解,若存在,有几个实数解?

解:令f(x)=2ln x+x-4.

因为f(1)=2ln 1+1-4=-30,f(e)=2ln e+e-4=e -20,

所以f(1)f(e)0.

又函数f(x)在(1,e)内的图像是连续不断的曲线,

所以函数f(x)在(1,e)内存在零点,即方程f(x)=0在(1,e)内存在实数解.

由于函数f(x)=2ln x+x-4在定义域(0,+)上为增函数,所以函数f(x)在(1,e)内只存在唯一的一个零点.

故方程2ln x+x-4=0在(1,e)内只存在唯一的实数解.

17.(12分)某商品在近100天内,商品的单价f(t)(元)与时间t(天)的函数关系式如下:

f(t)=t4+22, 040,tZ,-t2+52, 40100,tZ.

销售量g(t)与时间t(天)的函数关系式是

g(t)=-t3+1123(0100,tZ).

求这种商品在这100天内哪一天的销售额最高?

解:依题意,该商品在近100天内日销售额F(t)与时间t(天)的函数关系式为F(t)=f(t)g(t)

=t4+22-t3+1123, 040,tZ,-t2+52-t3+1123, 40100,tZ.

(1)若040,tZ,则

F(t)=(t4+22)(-t3+1123)

=-112(t-12)2+2 5003,

当t=12时,F(t)max=2 5003(元).

(2)若40100,tZ,则

F(t)=(-t2+52)(-t3+1123)

=16(t-108)2-83,

∵t=108100,

F(t)在(40,100]上递减,

当t=41时,F(t)max=745.5.

∵2 5003745.5,

第12天的日销售额最高.

18.(14分)某商场经营一批进价为12元/个的小商品.在4天的试销中,对此商品的单价(x)元与相应的日销量y(个)作了统计,其数据如下:

x 16 20 24 28

y 42 30 18 6

(1)能否找到一种函数,使它反映y关于x的函数关系?若能,写出函数解析式;

(2)设经营此商品的日销售利润为P(元),求P关于x的函数解析式,并指出当此商品的销售价每个为多少元时,才能使日销售利润P取最大值?最大值是多少?

解: (1)由已知数据作图如图,

观察x,y的关系,可大体看到y是x的一次函数,令

y=kx+b.当x=16时,y=42;x=20时,y=30.

得42=16k+b, ①30=20k+b, ②

由②-①得-12=4k,

k=-3,代入②得b=90.

所以y=-3x+90,显然当x=24时,y=18;

当x=28时,y=6.

对照数据,可以看到y=-3x+90即为所求解析式;

(2)利润P=(x-12)(-3x+90)=-3x2+126x-1 080=-3(x-21)2+243.

∵二次函数开口向下,

当x=21时,P最大为243.

即每件售价为21元时,利润最大,最大值为243元.

第3篇:函数应用试题

函数应用试题

一、选择题(本大题共10个小题,每小题5分,共50分)

1.函数f(x)=x2-3x-4的零点是 ()

A.(1,-4) B.(4,-1)

C.1,-4 D.4,-1

解析:由x2-3x-4=0,得x1=4,x2=-1.

答案:D

2.今有一组实验数据如下表所示:

t 1.99 3.0 4.0 5.1 6.12

u 1.5 4.04 7.5 12 18.01

则体现这些数据关系的最佳函数模型是 ()

A.u=log2t B.u=2t-2

C.u=t2-12 D.u=2t-2

解析:把t=1.99,t=3.0代入A、B、C、D验证易知,C最近似.

答案:C

3.储油30 m3的油桶,每分钟流出34 m3的油,则桶内剩余油量Q(m3)以流出时间t(分)为自变量的函数的定义域为 ()

A.[0,+) B.[0,452

未完,继续阅读 >

第4篇:函数综合试题练习

函数综合试题练习

函数综合试题

一:选择题

1.已知,则则A等于 ( )

A.15 B. C. D.225

2.若0<a<1,且函数,则下列各式中成立的是( )

A. B.

C. D.

3.已知则的值等于( )

A.0 B. C. D.9

4.若,则( )

A.a5.已知实数a、b满足等式,下列五个关系式:① 0

A.1个 B.2个 C.3个 D.4个

6.若0<a<1,且函数,则下列各式中成立的是( )

A. B.

C. D.

7.已知:的不等实根一共有( )

A、1个 B、2 个 C、3 个 D、4个

8.在计算机的算法语言中有一种函数叫做取整函数(也称高斯函数),它表示的整数部分,即[]是不超过的最大整数.例如:.设函数,则函数的值域为 ( )

A. B. C. D.

9.曲线在原点处的切线方程为

A.B.C.D.

10.设函数有

未完,继续阅读 >

第5篇:数学模拟综合检测试题

数学模拟综合检测试题

一、填空:(共21分 每空1分)

1、70305880读作( ),改写成用“万”作单位的数是( ),省略万位后面的尾数约是( )。

2、2010年第16届广州亚运会的举办时间为2010年11月12日——11月27日,那么这届亚运会要经历( )个星期还多( )天。

3、把2 18 ∶1 23 化成最简整数比是( ),比值是( )。

4、3÷( )=( )÷24= = 75% =( )折。

5、如图中圆柱的底面半径是( ),把这个圆柱的侧面展开可以得到一个长方形,这个长方形的面积是( ),这个圆柱体的体积是( )。(圆周率为π)

7、1千克盐水含盐50克,盐是盐水的( )%。

8、7 8 能同时被2、3、5整除,个位只能填( ),百位上最大能填( )。

9、一所学校男学生与女学生的比是4 :5

未完,继续阅读 >

第6篇:牛顿第一定律综合检测试题

牛顿第一定律综合检测试题

1、下列对运动的认识不正确的是……………………………..( )

A、亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动

B、伽利略认为力不是维持物体速度的原因

C、牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动

D、伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一速度,将保持这个速度继续运动下去

2、关于牛顿第一定律,下列说法正确的是………………………( )

A.牛顿第一定律是一条实验定律 B.牛顿第一定律说明力是改变物体运动状态的原因

C.惯性定律和惯性的实质是相同的 D.物体的运动不需要力来维持

3、一个物体保持静止或匀速运动状态不变,这是因为…………………( )

A.物体一定没有受到任何力 B.物体一定受到两个平衡力作用

C.物体所受

未完,继续阅读 >

下载高中数学函数的应用综合检测试题word格式文档
下载高中数学函数的应用综合检测试题.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文