第1篇:古今数学思想读后感
古今数学思想读后感
王平
学习数学,重要的是理解,而不是像别的科目一样死背下来.数学有一个特点,那就是闻一知十”.做会了一道标题,就可以总结这道标题所包含的方法和原理,再用总结的原理去办理这类题,董存瑞事迹读后感 见效就会更好我就是数学读后感.学习数学还有一点很重要,那就是从根本的动手,稳妥当当的去练,不求全部题都市做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是大意大意.每每一道标题会做,却因大意做错了,是很不值得的.所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法来片面分析标题,尽量做到不漏.学习是终身的事情,不要过于着急,一步一个脚迹的来,就肯定会取得一想不到的效果.课堂上努力营造一个明主平等、宽松和谐的学习氛围。关于学习气氛,苏霍姆林斯基认为:儿童的思维同他的情感分不开,这种情感是发展儿童智力和创造力极其重要的土壤,学生只有在情感愉悦的气氛里,思维才会活跃。因此,课堂上关注每一位学生,鼓励学生课堂上发表不同意见,即使说错了,对学生思维中合理的因素也加以肯定,保护学生的自尊心,激发学生的自信力。鼓励学生课堂上提出问题,对教师的讲授、学生的发言,大家随时可以发问。对提问的学生给与表扬鼓励,这样就形成了课堂上生生、师生的互动交流。课堂上还经常开展学习竟赛“最佳问题奖、最佳发言人”的评比活动,激发了学生的学习热情。
创设情境,激励学生主动参与教学过程。学生常常把自己当作是或希望自己是一个探索者、研究者和发现者。因此,教学中提供一些富有挑战性和探索性的问题,就会推动学生学习数学的积极性。例如书中举了这样的一例:在教学三角形内角和等于180°的知识时,教师请同学们事先准备好各种不同的三角形,并非别测量出每个内角的角度,标在图中。上课伊始的第一个教学活动就是“考考老师”。学生报出三角形两个内角的度数,请老师猜一猜第三个角是多少度。每次问题的抛出,教师都对答如流,准确无误。同学们都惊奇了,疑问由此产生,之后让学生自己动手实践发现规律。这样为学生创设猜想的学习情景,让学生凭借直觉大胆猜想,把课本中现成的结论转变成为学生探索的对象,变学生被动学习为主动探索研究。
总之,数学知识来源于生活,教师在数学教学中积极的创造条件,充分挖掘生活中的数学,为学生创设生动有趣的生活问题情景来帮助学生学习,鼓励学生善于去发现生活中的数学问题,养成运用的态度观察和分析周围的事物,并学会运用所学的数学知识解决实际问题,在实际生活中尝试到学习数学的乐趣。
第2篇:古今数学思想读后感
古今数学思想读后感
华应龙老师出身农人家庭,从一二岁起干了许多农活,他对农人有着自然的情结。他说,教育像农业那样需要信托、宽容、耐烦、期待和守望。教育是农业,不是产业,更不是商业。能像农人种地那样教书,真好!是的,做老师就当有强烈的时不再来的认识,像农人通过看天、摸土,确定收获机遇那样寻找讲堂上大胆地退与适宜地进的机遇。农人种的庄稼长得欠好,历来不求全谴责庄稼,而是反思自己。黄继光的故事读后感
是的,华老师一直用农人种地的精力鞭策自己,用积极的偷懒敞亮教学生活。他让我们在熟习的讲堂里看到了另类的风物。
学习数学,重要的是理解,而不是像别的科目一样死背下来.数学有一个特点,那就是闻一知十”.做会了一道标题,就可以总结这道标题所包含的方法和原理,再用总结的原理去办理这类题,董存瑞事迹读后感 见效就会更好我就是数学读后感.学习数学还有一点很重要,那就是从根本的动手,稳妥当当的去练,不求全部题都市做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是大意大意.每每一道标题会做,却因大意做错了,是很不值得的.所以在考数学的时候,肯定不要太急,要条理清楚的'去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法来片面分析标题,尽量做到不漏.学习是终身的事情,不要过于着急,一步一个脚迹的来,就肯定会取得一想不到的效果.我就是数学读后感
华老师对数学课的计划与引导,对学生头脑条理的开发, 名著读后感范文对探究体验数学本质的发掘,对数学学习过程和方法的把握,以及在熟习教学中巧妙渗入渗出的情绪、态度、代价观的做法,带给我许许多多的思索。
是的,华老师一直用农人种地的精力鞭策自己,用积极的偷懒敞亮教学生活。他让我们在熟习的讲堂里看到了另类的风物。
第3篇:读《古今数学思想》有感
读《古今数学思想》有感
程麟淋
道县
数学
提到“数学”二字,好像我们的脑海里仿佛只能浮现出一些数字、字母、算式、方程、抛物线等等,我们会的只是计算、解决与数学相关的问题,至于这些东西是怎么产生的,为什么会这样我们却不得而知。非常有幸的是我在暑假里阅读了由美国著名数学家、数学史家、教育家、哲学家和应用物理学家莫里斯·克莱因撰写的《古今数学思想》,他的这部博大精深的不朽著作,向人们展示了数学从巴比伦和埃及起源时至20世纪最初几个年代的主要创造,围绕着数学思想的主要概念以及为其作出贡献的人物组织起来的这本巨著,给人们提供了数学发展的的一个概观,揭示了隐藏在今天这个学科互不相连的各个分支后面的统一性。读完这本书,我感觉阅读这本书的过程就是我们数学教育者的一次寻根之旅。
本书作者莫里斯·克莱因(1908-199
第4篇:数学思想著作读后感
数学的高度客观性和高度创造性
莫里斯•克莱因(Morris Kline,1908—1992),纽约大学库朗数学研究所的教授,荣誉退休教授,他曾在那里主持一个电磁研究部门达20年之久。他的著作很多,包括《数学:确定性的丧失》和《数学与知识的探求》等。
数学的高度客观性和高度创造性,正是《古今数学思想》的主题思想。在《古今数学思想》这部经典著作中,美国著名的应用数学家、数学教育家莫里斯•克莱因重点关注数学家的思想,描述了数学家在高度抽象的数学世界里开疆拓土的冒险历程。
该书的中译本分为四册:第一册重点讲述古埃及、古巴比伦的原始数学乃至古希腊数学体系的初步建立,突出了欧几里得《几何原本》和阿基米德的工作,兼顾了中世纪和文艺复兴的代数学和数论。第二册可以看成数学中最重要的分支——微积分的发展史,包括解析几何