第1篇:立体几何教学中观察与想象能力的培养论文
立体几何教学中观察与想象能力的培养论文
【摘 要】技校生学习立体几何重点应放在培养综合能力,即观察能力、作图能力和想象能力上。因为观察是学好立体几何的基础,作图是学好立体几何的保证,想象是学好立体几何的关键。
【关键词】立体几何教学;能力培养
【Abstract】The technical students study the solid geometry in order to improve integration capability, that is, the ability of observation, drafting and visionary.Because observation is the foundation , drafting is the guarantee, visionary is the key of learning the solid geometry.
【Key words】Solid geometry teaching;Ability training.
立体几何在技校教学中占有非常重要的位置,直接关系到能否学好“画法几何”、“机械制图”等专业基础课程。可作为数学老师在教学这门课时都常感力不从心,其共同的的体会是:立体几何课难教,学生不爱听,教学效果差。究其原因有多种:如学生初中平面几何知识掌握得不扎实,学习方法和习惯不好,缺乏自我学习的能力等等,但最主要的原因还是学生对立体几何实物的观察与想象能力的缺失。如何上好立体几何课?我以为,清晰的空间概念是学好立体几何的关键所在。而“清晰的空间概念”的形成则必须培养起学生的两种能力,即观察能力和想象能力。使学生真正做到会看、会想并逐步形成习惯,使思维上升到自觉的水平。会看主要是让学生排除干扰,掌握看立体图的规律;会想就是指会在三维空间想象,突出想的范围、想的方法和规律,善于把实物转化为几何模型,掌握立体几何的思维规律。
1.观察是学好立体几何的基础
观察是发展数学表象思维的前提,而表象是在知觉的基础上所形成的感性形象,即人在思想中形成的事物的印象,例如在知觉金字塔、帐蓬、铅垂体的形象基础上,概括出来的一般的锥体的感觉就是表象。更具体地说,构成锥体的那些面、线在人脑的表征,就是一种数学表象。比如在立体几何教学中,一谈到“二面角”就能唤起主体头脑中河流大坝或平缓的山坡;一讲到斜线、射影,就会想起家乡田野中的电线杆。学生的表象思维的形成有一个逐步产生、发展的自我建构空间概念的过程。从学习一开始,学生就会努力通过自身观察建构表象。随着学习的深入,通过对表象进行加工、调整、积累、补充、修改、提炼,最后真正建构起完整准确的表象,即通过原有的表象对新表象的同化、顺应,达到认知结构的平衡,取得良好的图式。因此,在教学中,教师要引导学生多对现实事物进行观察,引导学生对图形形成正确的表象,抓住图形的形成特征与几何结构、个别不同的各种表象,从而建立起学生自已的空间观念。对于技校学生而言,由于许多专业课要求有一定的实际操作,对零部件有直观的了解。所以在立体几何教学中,培养学生观察的能力是至关重要的。教师可以引导学生观察教室内哪些是两个平行平面,它们具有哪些特点,说明为什么。学生通过对教室中墙面位置的观察看到:
(1)两个平行平面没有公共点。(因为如果有一个公共点它们就相交。)
(2)一个平面的一条直线与另一个平面平行。(天花板上的任一条直线与地面平行,不然两个平面就有公共点了,就相交了。)
(3)左右的墙与前面的墙相交,得到的两条交线是平行的。(在教师的启发下也很快得到证明)
(4)教室内能否找到两条异面或平行的直线?(天花板墙面交线及地面与墙面的交线,墙面与墙面的交线中能够寻找出空间两条异面、平行、垂直、相交的直线。)
(5)通过书本显示二面角的特点。
当然,除了借助周围实物来进行观察引导,还可以通过制作模型进行观察、分析,然后抽象概括出准确的概念。比如在三垂线教学中,做一个简单的模型,将一块三角板的`一条直角边放在平面内,而另一条直角边移动成平面的斜线,让学生观察模型,可帮助学生理解和掌握三垂线定理。直观教具的使用,能培养学生的探索精神,帮助学生发现并理解数学知识,有利于抽象思维能力的培养。然而,在实际授课中,由于班内学生人数多,用直观教具很难使全体学生都能获得模型的整体印象,可以通过多媒体展示立体几何图形,引导学生通过计算机观察实物模型,帮助学生树立空间概念。观察是作图、类比、想象的基础,通过观察实物、模型能加强对空间图形的直观了解,对作图、演算极为有益。但要注意的是,观察的目的不是为了说明存在相应概念的原委以及它的基本形状,重要的是借此分析、概括出准确的概念。比如黑板代表平面,但要理解平面的“无限延展性”。
2.想象是学好立体几何的关键
空间想象能力就是对客观事物的空间形式进行观察、分析和抽象思考的能力。要正确地把客观事物的空间形式反映为数学中的几何图形,并通过对几何图形的分析和研究,理解客观事物的空间形式的特征。学习立体几何想象与思考是不可缺少的,当我们观察周围空间形象时,自然会去类比、想象这些空间现象有什么特征、规律。在教学中,教师尤其要重视培养学生的这种能力。
例如,我们通过观察教室中线、面各种位置关系后,可以引导学生思考:
(1)直线与直线、直线与平面、平面与平面之间没有公共点就是平行,而平行就没有公共点。这两句话对吗?为什么?这里突出直线与直线是在同一平面内没有公共点才平行,而异面直线没有公共点,但不在同一平面内。
(2)直线与直线、直线与平面、平面与平面之间有一个公共点就相交,相交就有一个公共点。这两句话对吗?为什么?这里突出平面与平面有一个公共点就相交,且相交于过这点的一条直线,并指出公共点、公共直线的双重性,以及交点交线在解决问题中的重要性。
(3)直线与直线、直线与平面、平面与平面之间有两个公共点?它们的位置关系如何?这时两条直线重合,直线在平面内,平面与平面就相交于过两点的定直线。
(4)如果平面与平面有三个公共点时位置关系如何?这里突出相交与重合两种情况。通过引导学生观察所学的直线与直线、直线与平面平行的判定,引出联想问题。
另外,立体几何许多问题可以归结为平面问题来解决。对于角的概念,我们要弄清平面上的角的定义是什么?有什么特点?异面直线所成的角、直线与平面所在角、平面与平面所成的角,它们都可以转为平面上的角来计算。对于“二面角”的定义,为什么这样定义?如何作“二面角”?这些都需要学生去思考和想象。
平面几何的许多结论也可类推到空间去。从平面几何中两直线的位置关系,类推出空间两直线的相互位置关系,再类推出空间两平面的相互关系。又从平行四边形类推平行六面体,从多边形类推出多面体,从圆类推出球,等等。要学好立体几何,上述种种问题和思路都必须在教师的指导下进行思索和想象,才能领会它的真谛。
总之,“会看、会想”是技校学生学好立体几何的最为重要的能力,也是学习相关专业课程的基础。作为一个技校数学教师应在这块教学中加大力度,下好功夫。当然动眼、动脑也不能离开动手,它们是同一过程中的共同行为。只有观察透了,才能对作图做到心中有数,只有在头脑中形成清晰的空间图形,才能正确分析、思考、想象各元素之间的关系,进而演绎和计算各种空间度量。 对于立体几何的教学效果怎样才能最佳,还有待于同行们的共同的努力和探索。
第2篇:立体几何教学中观察与想象能力的培养论文
【摘 要】技校生学习立体几何重点应放在培养综合能力,即观察能力、作图能力和想象能力上。因为观察是学好立体几何的基础,作图是学好立体几何的保证,想象是学好立体几何的关键。
【关键词】立体几何教学;能力培养
【Abstract】The technical students study the solid geometry in order to improve integration capability, that is, the ability of observation, drafting and visionary.Because observation is the foundation , drafting is the guarantee, visionary is the key of learning the solid geometry.【Key words】Solid geometry teaching;Ability training.立体几何在技校教学中占有非常重要的位置,直接关系到能否学好“画法几何”、“机械制图”等专业基础课程。可作为数学老师在教学这门课时都常感力不从心,其共同的的体会是:立体几何课难教,学生不爱听,教学效果差。究其原因有多种:如学生初中平面几何知识掌握得不扎实,学习方法和习惯不好,缺乏自我学习的能力等等,但最主要的原因还是学生对立体几何实物的观察与想象能力的缺失。如何上好立体几何课?我以为,清晰的空间概念是学好立体几何的关键所在。而“清晰的空间概念”的形成则必须培养起学生的两种能力,即观察能力和想象能力。使学生真正做到会看、会想并逐步形成习惯,使思维上升到自觉的水平。会看主要是让学生排除干扰,掌握看立体图的规律;会想就是指会在三维空间想象,突出想的范围、想的方法和规律,善于把实物转化为几何模型,掌握立体几何的思维规律。
1.观察是学好立体几何的基础
观察是发展数学表象思维的前提,而表象是在知觉的基础上所形成的感性形象,即人在思想中形成的事物的印象,例如在知觉金字塔、帐蓬、铅垂体的形象基础上,概括出来的一般的锥体的感觉就是表象。更具体地说,构成锥体的那些面、线在人脑的表征,就是一种数学表象。比如在立体几何教学中,一谈到“二面角”就能唤起主体头脑中河流大坝或平缓的山坡;一讲到斜线、射影,就会想起家乡田野中的电线杆。学生的表象思维的形成有一个逐步产生、发展的自我建构空间概念的过程。从学习一开始,学生就会努力通过自身观察建构表象。随着学习的深入,通过对表象进行加工、调整、积累、补充、修改、提炼,最后真正建构起完整准确的表象,即通过原有的表象对新表象的同化、顺应,达到认知结构的平衡,取得良好的图式。因此,在教学中,教师要引导学生多对现实事物进行观察,引导学生对图形形成正确的表象,抓住图形的形成特征与几何结构、个别不同的各种表象,从而建立起学生自已的空间观念。对于技校学生而言,由于许多专业课要求有一定的实际操作,对零部件有直观的了解。所以在立体几何教学中,培养学生观察的能力是至关重要的。教师可以引导学生观察教室内哪些是两个平行平面,它们具有哪些特点,说明为什么。学生通过对教室中墙面位置的观察看到:
(1)两个平行平面没有公共点。(因为如果有一个公共点它们就相交。)
(2)一个平面的一条直线与另一个平面平行。(天花板上的任一条直线与地面平行,不然两个平面就有公共点了,就相交了。)
(3)左右的墙与前面的墙相交,得到的两条交线是平行的。(在教师的启发下也很快得到证明)
(4)教室内能否找到两条异面或平行的直线?(天花板墙面交线及地面与墙面的交线,墙面与墙面的交线中能够寻找出空间两条异面、平行、垂直、相交的直线。)
(5)通过书本显示二面角的特点。
当然,除了借助周围实物来进行观察引导,还可以通过制作模型进行观察、分析,然后抽象概括出准确的概念。比如在三垂线教学中,做一个简单的模型,将一块三角板的一条直角边放在平面内,而另一条直角边移动成平面的斜线,让学生观察模型,可帮助学生理解和掌握三垂线定理。直观教具的使用,能培养学生的探索精神,帮助学生发现并理解数学知识,有利于抽象思维能力的培养。然而,在实际授课中,由于班内学生人数多,用直观教具很难使全体学生都能获得模型的整体印象,可以通过多媒体展示立体几何图形,引导学生通过计算机观察实物模型,帮助学生树立空间概念。观察是作图、类比、想象的基础,通过观察实物、模型能加强对空间图形的直观了解,对作图、演算极为有益。但要注意的是,观察的目的不是为了说明存在相应概念的原委以及它的基本形状,重要的是借此分析、概括出准确的概念。比如黑板代表平面,但要理解平面的“无限延展性”。
2.想象是学好立体几何的关键
空间想象能力就是对客观事物的空间形式进行观察、分析和抽象思考的能力。要正确地把客观事物的空间形式反映为数学中的几何图形,并通过对几何图形的分析和研究,理解客观事物的空间形式的特征。学习立体几何想象与思考是不可缺少的,当我们观察周围空间形象时,自然会去类比、想象这些空间现象有什么特征、规律。在教学中,教师尤其要重视培养学生的这种能力。
例如,我们通过观察教室中线、面各种位置关系后,可以引导学生思考:
(1)直线与直线、直线与平面、平面与平面之间没有公共点就是平行,而平行就没有公共点。这两句话对吗?为什么?这里突出直线与直线是在同一平面内没有公共点才平行,而异面直线没有公共点,但不在同一平面内。
(2)直线与直线、直线与平面、平面与平面之间有一个公共点就相交,相交就有一个公共点。这两句话对吗?为什么?这里突出平面与平面有一个公共点就相交,且相交于过这点的一条直线,并指出公共点、公共直线的双重性,以及交点交线在解决问题中的重要性。
(3)直线与直线、直线与平面、平面与平面之间有两个公共点?它们的位置关系如何?这时两条直线重合,直线在平面内,平面与平面就相交于过两点的定直线。
(4)如果平面与平面有三个公共点时位置关系如何?这里突出相交与重合两种情况。通过引导学生观察所学的直线与直线、直线与平面平行的判定,引出联想问题。
另外,立体几何许多问题可以归结为平面问题来解决。对于角的概念,我们要弄清平面上的角的定义是什么?有什么特点?异面直线所成的角、直线与平面所在角、平面与平面所成的角,它们都可以转为平面上的角来计算。对于“二面角”的定义,为什么这样定义?如何作“二面角”?这些都需要学生去思考和想象。
平面几何的许多结论也可类推到空间去。从平面几何中两直线的位置关系,类推出空间两直线的相互位置关系,再类推出空间两平面的相互关系。又从平行四边形类推平行六面体,从多边形类推出多面体,从圆类推出球,等等。要学好立体几何,上述种种问题和思路都必须在教师的指导下进行思索和想象,才能领会它的真谛。
总之,“会看、会想”是技校学生学好立体几何的最为重要的能力,也是学习相关专业课程的基础。作为一个技校数学教师应在这块教学中加大力度,下好功夫。当然动眼、动脑也不能离开动手,它们是同一过程中的共同行为。只有观察透了,才能对作图做到心中有数,只有在头脑中形成清晰的空间图形,才能正确分析、思考、想象各元素之间的关系,进而演绎和计算各种空间度量。对于立体几何的教学效果怎样才能最佳,还有待于同行们的共同的努力和探索。
第3篇:立体几何教学能力培养论文
立体几何教学能力培养论文
一、在立体几何教学中要以概念、定理、公理为依据,以位置关系为线索,培养学生分析、思考和判断能力
直线、平面以及直线和平面的位置关系是立体几何的最主要的内容之一,这些内容是通过定义、定理、公理,组织成一个严密的逻辑体系。在进行这一内容的立体几何教学时,要依据这个体系中的某一个环节,以位置关系的转化,发展为线索去思考、分析和判断这是教师培养学生所必须具备和使用的方法。例4已知空间四边形ABCD中,AB=AD,CD=CB M、N、P、Q是个边中点,求证:MNPQ是矩形。分析:本题的关键在于如何证明MNPQ中有一个角是直角,而这个问题可以通过证明BD⊥AC来解决,两直线的垂直可由直线与平面的垂直或直线与直线的垂直转化而来,欲由直线平面垂直画出BD⊥AC,须造出与BD垂直的平面,使
第4篇:作文教学中观察与想象能力的培养
作文教学中观察与想象能力的培养
安龙县海子中学 岑永韩
在写作教学中注意培养学生的观察与想象能力,有助于学生写作思路的开拓,创造性思维的培养,能够多角度地观察生活,发现生活的丰富多彩,捕捉事物的特征,里就有创意的表达,并运用合理的想象,丰富表达的内容,进而提高学生的写作水平。那么如何在写作教学中培养学生的联想与想象能力呢?本文谈谈写作教学中有关观察与想象能力培养的问题。
一、训练观察
观察是人们认识事物的起点,是迈向创新的第一步。如果学生对周围事物缺乏认识,硬要他们去表达、去反映那是不可能的。对学生来说认识世界的主要途径是观察。只有认真细致的观察, 才能够多角度地观察生活,发现生活的丰富多彩,捕捉事物的特征,力求有创意的表达。
大千世界,有写不尽的人、事、物、景,然而,学生作文往往空洞无物,这不是因为他
第5篇:在立体几何的教学中培养学生的空间想象能力
在立体几何的教学中培养学生的空间想象能力
数学与信息学院
学科教学(数学)
唐涛
312045104005 摘要:空间想象能力作为中学数学“三大能力”一直课程专家设置课程,一线教师教学实践关注的重点。本文在探讨新课标对培养学生空间想象能力的基础上,分析总结了学生在学习中、教师在教学之中遇见的问题,归纳提炼了五大培养学生空间想象能力的立体几何教学策略。关键词:空间想象能力;立体几何;教学;策略
数学能力是学生数学素养的重要组成部分,也是学生实现自主学习、可持续发展的关键所在。长期以来“三大能力”都是我国数学教育关注的重点。但是传统的教育大纲忽视应用,突出逻辑的地位,甚至认为“数学能力的核心是逻辑思维能力”。随着课程改革的不断深入,学校、社会对学生的数学能力的要求也在不断发生改变,学生运用数学知识分析解决问
第6篇:高中立体几何教学中如何培养学生空间想象能力
高中立体几何教学中如何培养学生空间想象能力
摘要:高中数学新课标指出:能够由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能够根据条件做出立体模型或是画出图形,这些都属于再造想象,是空间想象能力的重要内容。学生只有具备较强的空间想象能力,才能加深对于概念、定理的内在本质理解,才能爱上立体几何学习,真正地学会学习。那么在高中立体几何教学中如何来培养学生的空间想象能力呢?
关键词:高中 立体几何 数学
立体几何是高中数学教学的重点与难点之一,而学生对立体几何抵触情绪较大,认为立体几何抽象难懂,枯燥深奥,而失去了学习的动机与热情。其根本原因就在于学生并没有形成较好的空间想象能力。空间想象能力是学好立体几何的关键所在。
一、引导学生认真观察
“观察是思维的窗口,没