第1篇:二次函数说课课件
二次函数说课课件
二次函数(quadratic function)的基本表示形式为y=ax+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。下面是小编为你带来的二次函数说课课件 ,欢迎阅读。
教学目标:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图 象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
重点难点:
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。
难点:理解二次函数y=ax2 +b x+c(a≠0)的 性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是教学的难点。
教学过程:
一、提出问题
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
2.函数 y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y= -4x2的图象向右平移2个单位再向上平移1个单位得到的)
3.函数y=-4(x-2)2+1具有哪些性质?
(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增 大而减小;当x=2时,函数取得最大值,最大值y=1)
4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?
5.你能画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质吗?
二、解决问题
由以上第4个问题的解决 ,我们已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质。
解:(1)列表:在x的取值范围内列出函数对应值表;
x…-2-101234…
y…-612
-4-212
-2-212
-4-612
…
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象。
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题 ,选取适当的长度单位,使画出的图象美观。
让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2
三、做一做
1.请你按照上面的方法,画出函数y=12x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?
教学要点
(1)在学生画函数图象的同时,教师巡视、指导;
(2)叫一位或两位同学板演,学生自纠,教 师点评。
2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?
教学要点
(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的`顶点坐标有什么关系?
以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;
y=ax2 +bx+c=a(x2+bax)+c =a[x2+bax+(b2a)2-(b2a)2]+c =a[x2+bax+(b2a)2]+c-b24a
=a(x+b2a)2+4ac-b24a
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-b2a,4ac-b24a)
四、课堂练习:
练习第1、2、3题。
五、小结: 通过本节课的学习,你学到了什么知识?有何体会?
六、作业:
1.填空:
(1)抛物线y=x2-2x+2的顶点坐标是_______;
(2)抛物线y=2x2-2x-52的开口_______,对称轴是_______;
(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;
(4)抛物线y=-12x2+2x+4的对称轴是_______;
(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.
2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。
3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1 )y=3x2+2x;(2)y=-x 2-2x
( 3)y=-2x2+8x-8(4)y=12x2-4x+3
4.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质
第2篇:反比例函数说课课件
反比例函数说课课件
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析:
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:
1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的.解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。
2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。
3.通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析:
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法:
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导:
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一)复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1)正方形的周长C和它的一边的长a之间的关系
(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3)矩形的面积为10时,它的长x和宽y之间的关系
(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式
(1)在列表过程中,x的值不能取0;取值可以由原点向两侧取相反数;可以适当的多取一些点,方便连线2、请学生小结一下我们在画图象的过程中需要大家注意的地方.
(2)反比例函数图象是光滑曲线
(3)函数图象只能是无限逼近y轴和x轴,永远不会和两轴相交
(二) 作业:
基础题:A册习题21.5提高题:同步72页第14,15,16题
第3篇:正比例函数说课课件
正比例函数说课课件
课件的技术性主要通过程序中各种数据结构、程序结构、控制技巧以及运行的可靠性来衡定的。下面小编为大家带来正比例函数说课课件,仅供参考,希望能够帮到大家。
正比例函数说课课件
各位评委,各位老师:
你们好!
今天我说课的内容是新人教版义务教育课程标准实验教材八年级数学上册第十四章第二节《正比例函数》,下面我将从教学背景、学法分析、教法分析、教学过程分析、教学流程分析、教学效果评价分析六个方面进行简要说明。
一、说教学背景
1.在教材中的地位和作用
正比例函数是新人教版九年义务教育课程标准实验教科书八年级数学上册第十四章第二节的内容,本节内容是在学生学习了变量和函数的概念的基础上进行的.它既是对前面所学知识的应用从本,也是为以后学习一次函数作铺垫,因此,具有举足轻重的作用.
2.学情分析
小学阶段学
第4篇:锐角三角函数说课课件(精选7篇)
锐角三角函数说课课件(精选7篇)
导语:今天小编给大家带来了“锐角三角函数说课课件”,供大家阅读和参考。希望它对您有帮助。如果您喜欢这篇文章,请分享给您的好友。
锐角三角函数说课课件 篇1
一、教学内容与学情分析
1、本课内容在教材、新课标中的地位和作用
《锐角三角函数的简单应用》是初中数学九年级上册第一章第六节的内容。本节课是《锐角三角函数的简单应用》的第三课时,是继前面学习了三角函数应用中的有关旋转问题和测量问题后的又一种类型的应用:即有关工程中的坡度问题。三种类型的问题只是问题的背景不同,其实解决问题所用的工具都相同,即直角三角形的边角关系。因此本节课沿用前两节课的教学模式。直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《锐角三角函