第1篇:探索体积单位间的进率优秀教学设计
探索体积单位间的进率优秀教学设计
教学目标:
1、结合具体事例,经历认识体积单位之间进率的过程。
2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。
3、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。
教学重点和难点:
体积单位进率和单位之间的互化。
教学过程:
一、教学体积单位间的进率
1、复习相关旧知1平方分米=100平方厘米的推导过程
(1)提问:1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。
学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程。
(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来。
2、推导1立方分米=1000立方厘米
(1)提问:1立方分米等于多少立方厘米?你们能应用类似的方法推导出来吗?要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来。
学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(101010)立方厘米。
(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。
3、推导1立方米=1000立方分米
(1)提问:不用操作,你能想出1立方米等于多少立方分米吗?
(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?
(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米
4、总结相邻两个体积单位间的进率.
(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
您现在正在阅读的《探索体积单位间的进率》教学设计文章内容由收集!本站将为您提供更多的.精品教学资源!《探索体积单位间的进率》教学设计
(2)引导学生观察:
1立方分米=1000立方厘米
1立方米=1000立方分米
并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。
5、构建长度、面积和体积单位的计量系统。
(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?
(长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的。)
(2)提问:长度、面积和体积单位,它们相邻两个单位间的进率相同吗?学生回答后将书上第119页上的表格填完整。
二、练一练
(1)引导学生认真审题:将6立方米、8000立方分米改写成多少立方分米,也就是要将高级体积单位的名数改写成低级体积单位的名数。
(2)放手让学生自己思考解题的方法.
(3)引导学生归纳将高级体积单位的名数改写成相邻的低级体积单位的名数的一般方法(师板书):
高级体积单位的名数1000=相邻的低级体积单位的名数
三、练一练
四、小结
引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。这样,学生一般能概括:本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写,在解决实际问题时能正确应用。
板书设计:
体积单位间的进率
1立方分米=1000立方厘米
1立方米=1000立方分米
高级体积单位的名数 相邻的低级体积单位的名数
第2篇:《探索体积单位间的进率》优秀教学设计
《探索体积单位间的进率》优秀教学设计
《探索体积单位间的进率》优秀教学设计
教学目标:
1、结合具体事例,经历认识体积单位之间进率的过程。
2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。
3、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。
教学重点和难点:
体积单位进率和单位之间的互化。
教学过程:
一、教学体积单位间的进率
1、复习相关旧知1平方分米=100平方厘米的推导过程
(1)提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。”
学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程。
(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来。
2、推导1立方分米=1000立方厘米
(1)提问:“1立方分米等于多少立方厘米?你们能应用类似的方法推导出来吗?”要求每个小组将推出来的结果用1立方分米的.正方体纸盒表示出来。
学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米。
(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。
3、推导1立方米=1000立方分米
(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”
(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?
(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米
4、总结相邻两个体积单位间的进率.
(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
(2)引导学生观察:1立方分米=1000立方厘米
1立方米=1000立方分米
并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。
5、构建长度、面积和体积单位的计量系统。
(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?
(长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的。)
(2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第119页上的表格填完整。
二、练一练 1。
(1)引导学生认真审题:将6立方米、8000立方分米改写成多少立方分米,也就是要将高级体积单位的名数改写成低级体积单位的名数。
(2)放手让学生自己思考解题的方法.
(3)引导学生归纳将高级体积单位的名数改写成相邻的低级体积单位的名数的一般方法(师板书):
高级体积单位的名数×1000=相邻的低级体积单位的名数
三、练一练 2
四、小结
引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。这样,学生一般能概括:本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写,在解决实际问题时能正确应用。
板书设计:
体积单位间的进率
1立方分米=1000立方厘米
1立方米=1000立方分米
高级体积单位的名数 相邻的低级体积单位的名数
第3篇::《体积单位间的进率》教学设计
小学数学五年级下册
《体积单位间的进率》教学设计
一、教材分析
体积单位间的进率是在学生已经学习了长度单位、面积单位和体积单位间的进率以及掌握了长方体和正方体体积的计算方法的基础上进行教学的。这堂课我设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。
二、教学目标
通过本节课的教学,主要达到以下目标:
1、通过计算、比较、分析、归纳,使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解和掌握相邻的两个体积单位之间的进率是1000的道理。
2、会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率,并能正确应用体积单位间的进率进行名数的转化。
3、在学习过程中,培养学生比较、分析、概括的能力,提
第4篇:体积单位间的进率教学设计
体积单位之间的进率
王昉
教学目标:
在理解的基础上掌握常用的体积单位之间的进率和名数的改写。
教学重点:
体积单位之间的进率。
教学用具 : 投影仪和棱长是1分米的正方体模型,如教材第37页的图。
教学过程:
一、复习导入
师:长度的单位有哪些?相邻两个长度单位间的进率是多少?
面积的单位有哪些?相邻两个面积单位间的进率是多少?
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)请同学们一起读课题。
二、独立学习
自学提示
(一):
(6分钟)
(1)当正方体A的棱长是1分米时,它的体积是多少?
(2)当正方体B的棱长是10厘米时,它的体积是多少?正方体B与正方体A 的体积有什么关系?那么,1立方分米等于多少立方厘米?,(3)而1分米是多少厘米?1立方分米等于多少立方厘米?那么,1
第5篇:体积单位间的进率教学设计
体积单位间的进率教学设计
一、导入
1:前面我们学习了有关体积的一些知识,下面我想考查一下同学们掌握的怎么样,请看题。课件出示复习题。
2:我这儿一个问题同学们想知道怎么回事吗?星期天,李静买了一个魔方,她想到刚学习了怎样求正方体的体积,就动手量了一下这个魔方的棱长,并计算出了它的体积是216立方厘米。邻居的大哥哥也有一个魔方,大哥哥告诉李静,他家的魔方大概只有0.2立方分米。李静就纳闷了,怎么有那么小的魔方呢?大哥哥却跟她开玩笑说:“如果你现在就坐在五一班樊老师的教室里,听了她讲的这节课,你就明白是怎么回事了。”要解决李静同学的困扰,就用到了我们今天要学习的知识----体积单位间的进率。(板书课题)
3:回忆一下,我们学过哪些常用的长度单位?相邻两个单位间的的进率是多少?还学过哪些常用的面积单位?相