二次函数的图象和性质教学设计

精品范文 时间:2022-12-22 21:59:39 收藏本文下载本文

第1篇:《二次函数的图象和性质》教学设计

《二次函数的图象和性质》教学设计

教学目标:

1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.

2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.

3.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.

4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.

教学重点:

1.利用描点法作出函数y=x2的图象,根据图象认识和理解二次函数y=x2的性质.

2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.

教学难点:

经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现探索经验运用的思维过程.

教学过程:

一、学前准备

我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是_______________,一般的一次函数的图象是____________,反比例函数的图象是_________________.上节课我们学习了二次函数的一般形式为_________________________,那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.

二、探究活动

(一)、作函数y=x2的图象.

回忆画函数图象的一般步骤吗?(列表,描点,连线.)

下面就请大家按上面的步骤作出y=x2的图象.

(1)列表:

x -3 -2 -1 0 1 2 3

y 9 4 1 0 1 4 9

(2)在直角坐标系中描点.

(3)用光滑的,曲线连接各点,便得到函数y=x2的图象.

(二)、议一议

对于二次函数y=x2的.图象, (1)你能描述图象的形状吗?与同伴进行交流.

(2)图象与x轴有交点吗?如果有,交点坐标是什么?

(3)当x0时,随着x值的增大,y的值如何变化?当x0时呢?

(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?

(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并交流.

下面我们系统地总结:

(三)y=x2的图象的性质.

二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流.

大家讨论之后系统地总结出y=x2的图象的所有性质.

当堂练习:按照画图象的步骤作出函数y=-x2的图象.

y=-x2的图象如右图,并让学生总结:

形状是___________,只是它的开口方向____________,它

与y=x2的图象形状________,方向________,这两个图形可

以看成是__________对称.

试着让学生讨论y=-x2的图象的性质.

并尝试比较y=x2与y=-x2的图象,比较异同点.

不同点:

相同点:

联系:

(四)课堂练习: 随堂练习(P47)

三.学习体会

1.本节课你有哪些收获?你还有哪些疑问?

2.你认为老师上课过程中还有哪些须改进的地方?

3.预习时的疑问解决了吗?

四.自我测试

1.在同一直角坐标系中画出函数y=x2与y=-x2的图象.

2.下列函数中是二次函数的是 ( )

A. y=2+5x2 B.y= C.y=3x(x+5)2 D. y=

3.分别说出抛物线y=4x2与y=- x2的开口方向,对称轴与顶点坐标

4、已知函数y=mxm2+m.

(1)m取何值时,它的图象开口向上.

(2)当x取何值时,y随x的增大而增大.

(3)当x取何值时,y随x的增大而减小.

(4)x取何值时,函数有最小值.

第2篇:二次函数的图象和性质教学设计

二次函数的图象和性质教学设计

教学目标:

1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

重点难点:

重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。

难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。

教学过程:

一、提出问题

1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?

(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。

2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?

(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)

3.函数y=-4(x-2)2+1具有哪些性质?

(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)

4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗?

[因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)]

5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?

二、解决问题

由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。

解:(1)列表:在x的取值范围内列出函数对应值表;

x … -2 -1 0 1 2 3 4 …

y … -6 -4 -2 -2 -2 -4 -6 …

(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。

说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。

(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的.图象美观。

让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;

当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;

当x=1时,函数取得最大值,最大值y=-2

三、做一做

1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?

教学要点

(1)在学生画函数图象的同时,教师巡视、指导;

(2)叫一位或两位同学板演,学生自纠,教师点评。

2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?

教学要点

(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?

以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?

教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;

y=ax2+bx+c

=a(x2+x)+c

=a[x2+x+ ()2-()2]+c

=a[x2+x+()2]+c-

=a(x+)2+

当a>0时,开口向上,当a<0时,开口向下。

对称轴是x=-b/ 2a ,顶点坐标是(-,)

四、课堂练习

课本练习第1、2、3题。

五、小结

通过本节课的学习,你学到了什么知识?有何体会?

第3篇:二次函数的图象和性质

二次函数的图象和性质(第一课时)教学案例

函数是中学数学学习的重要内容,函数概念通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种变化与对应的思想对于中学生来讲,学习起来非常困难。虽然,函数图像将函数的数量关系直观化、形象化,提供了数形结合地研究问题的重要方法,但在没有信息技术支持下的教学,研究函数图像对教师来讲也是较为困难的一件事。

二次函数教学时间约为 10课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量

未完,继续阅读 >

第4篇:二次函数图象和性质的教学反思

二次函数图象和性质的教学反思

本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。

首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。

接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2009年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观

未完,继续阅读 >

第5篇:二次函数的图象和性质练习题

二次函数的图象和性质练习题

一.选择题

1.抛物线 的顶点坐标是( )

A.(0,1) B. (0,-1) C. (1,0) D. (-1,0)

2.抛物线 与 轴有两个交点,且开口向下,则 的取值范围分别是( )

A. B. C. D.

3.如图,小芳在某次投篮中,球的运动路线是抛物线y=-15x2+3.5的一部分,若命中篮

圈中心,则他与篮底的距离 是( )

A.3.5 B.4 C.4.5 D.4.6

4 .将抛物线平移后得到抛物线 ,平移的方法可以是( ) 第3题

A.向下平移 3个单位长度 B. 向 上平移3个单位长度

C.向下平移2个单位长度 D.向下平移2个单位长度

5.抛物线 的对称轴是( )

A.直线 B.直线 C. 轴 D.直线

6.抛物线 与 轴交于B,C两点,顶点为A,则 的周长为( )

A. B.

未完,继续阅读 >

第6篇:(教案)二次函数图象和性质复习教案

《二次函数的图象和性质》复习课教案

海洲初级中学 初三数学备课组

内容来源:初中九年级《数学(上册)》教科书 教学内容:二次函数图像与性质复习课时:两课时 教学目标:

1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。2.会利用二次函数的图象判断a、b、c的取值情况。

3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。教材分析:

二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网

未完,继续阅读 >

第7篇:二次函数及其图象和性质(学案)

二次函数及其图象和性质(学案)

学习内容:

1、二次函数的概念;

2、二次函数的图象;

3、二次函数的性质。

学习要求:

1、理解二次函数的概念,会用描点法画出二次函数的图象,理解二次函数与抛物线的有关概念

2、通过二次函数的图象,理解并掌握二次函数的性质,会判断二次函数的开口方向;会求顶点坐标,

会判顶点坐标,对称轴方程;会判断并求出最大值或最小值;会判断增减性,等等。

3、由图象能确定a、b、c、△的符号,及判定。

学习重点:

二次函数的图象和性质及运用。

学习难点:

二次函数的图象的画法以及理解y=a(x—h)2+h型抛物线是由抛物线y=ax2平移而得到的。

例题分析

第一阶梯

例1、在同一坐标系中画出下列二次函数的图象。

1、 2、y=3x2

3、 4、y=-3x2

提示:

以上四个二次函数我们在列表时首先在所列的表正中位置

未完,继续阅读 >

下载二次函数的图象和性质教学设计word格式文档
下载二次函数的图象和性质教学设计.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文