质数合数问题的奥数试题及答案

精品范文 时间:2022-11-28 08:37:05 收藏本文下载本文

第1篇:关于质数合数问题的奥数试题及答案

关于质数合数问题的奥数试题及答案

今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是( ).

考点:质数与合数问题.

分析:可以先求出这10个质数的和是多少,根据已知条件,把这10个质数分成两组,即可求出每组5个质数的和,然后在分析每组数各有哪几种情况,由此解答即可.

解答:这10个质数之和是598,分成两组后,每组五个数之和是598÷2=299.

质数合数问题奥数试题及答案:在有79这组数中,其他四个质数之和是299-79=220,个位数是0,因此这四个质数的'个位数可能有三种情形:

(1)三个1和一个7;

(2)二个3和二个7;

(3)三个3和一个1.

31+41+101=173,220-173=47,可这十个数中没有47,情形(1)被否定.

17+67=84,220-84=136,个位数为3有23,53,83,只有53+83=136,因此从情形(2)得到一种分组:17,53,67,79,83和23,31,41,101,103.

所以,含有101这组数中,从小到大排列第二个数是31.

[注]从题目本身的要求来说,只要找出一种分组就可以了,但从情形(3)还可以得出另一种分组.23+53+83+103=262,262-220=42,我们能否从53,83,103中找出一个数,用比它少42的数来代替呢?

53-42=11,83-42=41,103-42=61.这十个数中没有11和61,只有41.又得到另一种分组:

23,41,53,79,103和17,31,67,83,101.

由此可见,不论哪一种分组,含101这组数中,从小到大排列,第二个数都是31.

点评:此题的解答思路要开阔,考虑要周全,分析所包含的各种情况,提高分析解决问题的能力.

第2篇:五年级奥数质数与合数试题

五年级奥数质数与合数试题

2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?

考点:合数与质数.

分析:根据周长先求出长与宽的和,再把和写成两个质数的和,两个质数的积最大者即为答案.

解答::由于长+宽是36÷2=18,

将18表示为两个质数和18=5+13=7+11,

所以长方形的面积是5×13=65或7×11=77,

故长方形的.面积至多是77平方单位.

点评:此题主要考查长方形的周长以及质数的知识.

第3篇:五年级奥数题及答案:质数、合数和分解质因数问题3

五年级奥数题及答案:质数、合数和分解质因数

问题3

编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:质数、合数和分解质因数问题3,可以帮助到你们,助您快速通往高分之路!

例4 连续九个自然数中至多有几个质数?为什么?

解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因

未完,继续阅读 >

第4篇:五年级质数与合数奥数教案

质数与合数

第一部分 知识梳理

1、自然数按照能被多少个不同的自然数整除可以分为三类:

第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。

第二类:只能被两个不同的自然数整除的自然数。因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。这类自然数叫质数(或素数)。例如,2,3,5,7,„

第三类:能被两个以上的自然数整除的自然数。这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除。这类自然数叫合数。例如,4,6,8,9,15,„

2、2的倍数的特征:_________

5的倍数的特征:_________

3的倍数的特征:_________

3、举例:7的倍数有:_________

11的倍数有:_________

13的倍数有:______

未完,继续阅读 >

第5篇:关于质数与合数的小学奥数试题详解

关于质数与合数的小学奥数试题详解

某个质数与6、8、12、14之和都仍然是质数,一共有1个满足上述条件的质数.

考点 :质数与合数问题.

分析: 个位数的质数是2、3、5、7、9,大于10的质数的个位数一个不是0、2或5,是1、3、7或9;由于6、8、12、14是偶数,则这个质数的个位数一定为奇数,即为1,3,5,7,9.然后将它们分别与6、8、12、14相加进行验证排除即可.

解答: 解:6,8,12,14都是偶数,加上唯一的偶数质数2和仍然是偶数,所以不是2.

14加上任何尾数是1的质数,最后的尾数都是5,一定能被5整除.

12加上任何尾数是3的质数,尾数也是5;

8加上任何尾数是7的质数,尾数也是5;

6加上任何尾数是9的`质数,尾数也是5.

所以,这个质数的末位一定不是1,3,7,9.

5加上6、8、12、14

未完,继续阅读 >

第6篇:奥数试题及答案

奥数试题及答案

一个等差数列的第2项是2.8,第三项是3.1,这个等差数列的`第15项是()。

考点:等差数列.

分析:这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.

解答:解:公差是:3.1-2.8=0.3,

首项是2.8-0.3=2.5,

2.5+(15-1)×0.3,

=2.5+4.2,

=6.7;

故答案为:6.7.

点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).

未完,继续阅读 >

下载质数合数问题的奥数试题及答案word格式文档
下载质数合数问题的奥数试题及答案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文