椭圆知识点

精品范文 时间:2022-10-16 00:22:10 收藏本文下载本文

第1篇:椭圆知识点

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式;为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。

扩展资料

椭圆的对称性

不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

顶点:

焦点在X轴时:长轴顶点:(-a,0),(a,0)

短轴顶点:(0,b),(0,-b)

焦点在Y轴时:长轴顶点:(0,-a),(0,a)

短轴顶点:(b,0),(-b,0)

注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻。

焦点:

当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)

当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)

第2篇:椭圆知识点总结

椭圆是数学中的一个常考点,相关的知识点其实并不是十分的多。下面是小编推荐给大家的椭圆知识点总结,希望能带给大家帮助。

椭圆知识点总结

1.椭圆的概念

在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:

(1)若a>c,则集合P为椭圆;

(2)若a=c,则集合P为线段;

(3)若a

2.椭圆的标准方程和几何性质

一条规律

椭圆焦点位置与x2,y2系数间的关系:

两种方法

(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程.

(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程.

三种技巧

(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.

(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0

(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.

椭圆方程的第一定义:

⑴①椭圆的标准方程:

i. 中心在原点,焦点在x轴上:. ii. 中心在原点,焦点在轴上:.

②一般方程:.③椭圆的标准参数方程:的参数方程为(一象限应是属于

).

⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑦焦点半径:

i. 设为椭圆上的一点,为左、右焦点,则

由椭圆方程的第二定义可以推出.

ii.设为椭圆上的一点,为上、下焦点,则

由椭圆方程的第二定义可以推出.

由椭圆第二定义可知:归结起来为“左加右减”.

注意:椭圆参数方程的推导:得方程的轨迹为椭圆.

⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和

⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.

(4)若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.

第3篇:椭圆知识点总结

椭圆知识点总结

在平平淡淡的学习中,很多人都经常追着老师们要知识点吧,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。掌握知识点有助于大家更好的学习。下面是小编收集整理的椭圆知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

椭圆知识点总结1

⑴集合与简易逻辑:集合的.概念与运算、简易逻辑、充要条件。

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用。

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用。

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用。

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用。

未完,继续阅读 >

下载椭圆知识点word格式文档
下载椭圆知识点.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

相关专题
热门文章
点击下载本文