1.2.4 绝对值(一)教学设计_绝对值教学设计人教版

教学设计 时间:2020-02-28 04:23:55 收藏本文下载本文
【www.daodoc.com - 教学设计】

1.2.4 绝对值(一)教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“绝对值教学设计人教版”。

璧山县丁家中学乐学案

第5课时 绝对值

(一)设计者:尹道伦 审定者:何祖平

教学目标 1.知识与技能

①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.

②通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.过程与方法

经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

3.情感、态度与价值观

①通过解释绝对值的几何意义,渗透数形结合的思想.

②体验运用直观知识解决数学问题的成功.

教学重点难点

重点:给出一个数,会求它的绝对值.

难点:绝对值的几何意义、代数定义的导出.

教与学互动设计

一、创设情境,导入新课

活动 请两同学到讲台前,分别向左、向右行3米.

交流 ①他们所走的路线相同吗? ②若向右为正,分别可怎样表示他们的位置? ③他们所走的路程的远近是多少?

二、合作交流,解读探究

观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,•它们的__________不同,__________相同.

【总结】 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,•但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.

绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.

想一想(1)-3的绝对值是什么?

年级1 学期1 学科 数学 页码

璧山县丁家中学乐学案(2)+2的绝对值是多少?(3)-12的绝对值呢?

(4)a的绝对值呢?

答案略.

交流 同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.思考 例1 求8,-8,3,-3,-的绝对值.(出示胶片)

由此,你想到什么规律?

总结 互为相反数的两个数的绝对值相同.

求+2.3,-1.6,9,0,-7,+3的绝对值.(出示胶片)

由此,你想到什么规律?

讨论交流 正数的绝对值是它本身,负数的绝对值是它的相反数,0•的绝对值是零.

总结 正数的绝对值是它本身.

负数的绝对值是它的相反数.

零的绝对值是零.

讨论 字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少?

学生活动:分组讨论,教师加入讨论,学生相反补充回答.

归纳 若a>0,则│a│=a 若a

三、应用迁移,巩固提高

例题填空:

(1)绝对值等于4的数有 个,它们是 .

(2)绝对值等于-3的数有 个.

(3)绝对值等于本身的数有 个,它们是 .

(4)①若│a│=2,则a= .

②若│-a│=3,则a= .

(5)绝对值不大于2的整数是

(6)根据绝对值的意义,思考:

①如果=1,那么a 0;

年级1 学期1 学科 数学 页码

璧山县丁家中学乐学案

②如果=-1,那么a 0;

③如果a

【点评】 去绝对值符号,首先要判断绝对值里的正负情况,由此发展自身的合情推理能力.

四、总结反思,拓展升华

本节课,我们学习认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断是正数还是负数. 1.阅读与理解:

点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为│AB│.

当AB两点中有一点在原点时,不妨设点A在原点,如图(1)所示,│AB│=│OB│=│b│=│a-b│;

当A、B两点都不在原点时:

① 如图(2)所示,点都在原点的右边,│AB│=│OB│-│OA│=│b│-│a│=•b-a=│a-b│; ② 如图(3)所示,点都在原点的左边,│AB=│OB│-│OA│=│b│-│a│=-b-•(-a)=│a-b│; ③ 如图(4)所示,点都在原点的两边,│AB│=│OA│+│OB│=│a│+│b│=•-a+b=│a-b│;

aO(A)(1)bBaOA(2)bBbBaA(3)OaAO(4)bB

综上,数轴上A、B两点之间的距离│AB│=│a-b│. 2.回答下列问题:

(1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5•的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;

(2)数轴上表示x和-1的两点之间的距离是,如果│AB│=2,那么x•为;

(3)当代数式│x+1│+│x-2│取最小值时,相应的x的取值范围是

五、课堂跟踪反馈 1.填空题

(1)-│-3│=,+│-0.27│=,年级1 学期1 学科 数学 页码

璧山县丁家中学乐学案

-│+26│=,-(+24)= .

(2)-4的绝对值是,绝对值等于4的数是 .

(3)若│x│=2,则x=,若│-x│=2,则x= .若│-x│=-3,则x .

(4)│3.14-|= .

(5)绝对值小于3的所有整数有 . 2.选择题

(1)则│a│≥0,那么()

A.a>0 B.a

(2)若│a│=│b│,则a、b的关系是()

A.a=b B.a=-b C.a+b=0或a-b=0 D.a=0且b=0(3)下列说法不正确的是()

A.如果a的绝对值比它本身大,则a一定是负数 B.如果两个数相等,那么它们的绝对值也必不相等 C.两个负有理数,绝对值大的离原点远 D.两个负有理数,大的离原点近

(4)若│x│+x=0,则x一定是()

A.负数 B.0 C.非正数 D.非负数

(5)已知│a+b│+│a-b│-2b=0,在数轴上给出关于a、b的四种位置关系,•则可能成立的有()

a0bb0a0ab0ba

A.1种 B.2种 C.3种 D.4种 3.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.

4.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表: +15-10 +30-20-40 指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?

年级1 学期1 学科 数学 页码

璧山县丁家中学乐学案

年级1 学期1

学科 数学 页码

2.4《绝对值》教学设计

§2.4绝对值教学目标(一)知识目标使学生掌握绝对值的几何意义和代数意义,会求一个数的绝对值。(二)能力目标通过观察、比较、探索、分析和归纳等过程,使学生学会合作、交流,渗透数......

2.4绝对值不等式练习题

2.4绝对值的不等式练习1.不等式3x42的整数解的个数为()A0B1C2D大于22.已知ab,ab0,那么()AabB1a1bCabD1a1b3.不等式x3x1的解是()A2x5Bx36Cx2D2x34.不等式x5x6的解集为() A{xx......

1.2.4绝对值(一)教学设计

1.2.4 绝对值(一)教学目标 1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2......

《绝对值》教学设计

《绝对值》教学设计备课教师:莫成山 祁兴梅 教材分析《绝对值》选自义务教育课程标准实验教科书《数学》(华东师大版)七年级上册,是初一数学的一个难点,也是重点。教学目标要求从......

绝对值 教学设计

课题:绝对值教材:义务教育课程标准实验教科书人教版 七年级 上册 教学内容:第一章 有理数,1.2有理数 教学目标:1.知识与技能(1)借助数轴与绝对值初步理解绝对值的概念 (2)熟悉绝......

下载1.2.4 绝对值(一)教学设计word格式文档
下载1.2.4 绝对值(一)教学设计.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文