一元一次方程教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“一元一次方程教案设计”。
删繁就简三秋树领异标新二月花
————“一元一次方程应用”教学实录及反思
临沂高都中学 王兴玲 列方程解应用题,是整个初中阶段数学教学的重点。因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。具体设计如下:
一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)
师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?
问题
1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?
生1:沂河大桥长为
(米)(师板演)师:除了列算式外,还有别的方法吗? 生2:可以列方程
师:如果用列方程的方法来解,设哪个未知数为x? 生2:设沂河大桥的长为x米。
师:根据怎样的相当关系来列方程?方程的解是多少?
生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540(教师板演)
师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?
生3:列方程就是直来直往。
师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)
师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题„„
(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)
二、故事的发展——怎样列方程
师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。有个同学问道:车上的面粉一袋重量为多少呢?(引出问题)
问题2:一辆手推车装满时,可装半袋面粉加180斤大米,或者4袋面粉加5斤大米,求一袋面粉的重量?
师:谁能很快的用算术方法解决?(生思考)
师:能否通过列方程解决呢?生1:设一袋面粉的重量为x斤,则(教师板演)
师:请问等式的左边表示什么量?等式的右边表示什么量?(引导学生解释题意)
生1:都表示手推车满载时的重量 师:这就告诉我们怎样列方程? 师:列方程的实质—分析题意的过程中,先随便“拽出”一个量,根据题意用两种不同的方式表示“它”中间用“等号”连接即可。能理解吗?
生2:随便“拽出”一个可以吗?
师:嗯,那我们来试一试。你说一个量吧!生2:4袋面粉的重量? 师(板演):4袋面粉的重量可以用4x表示,也可以用 表示,所以可得方程
师:能否用这种方法来列方程呢?小组合作,列出方程越多越好。(生合作,讨论,得出下了方程)
生(众):表示半袋面粉的重量,得:表示180斤,得:
表示5斤,得:
表示一袋面粉的重量,得:
(师板演,共列出7个方程)
师:黑板上的方程中,那思维快捷,方便? 生3:表示:“满载”
师:这表明,随便“拽出”的一个量是否恰当,对方程的快捷有很大的影响,刚才老师说的“方程的实质”应怎样改进?谁试着说说?
生4:可以把随便“拽出”一个量改为:“选择一个合适的量” 师(板演):归纳总结:“选择一个和适量,两种方法来表示,后用等号去连接。”
师:下面同学们独立求解本题答案,然后小组长检查。
(设计意图:设计随便“拽出”一个量,变式出了问题的一系列不同解法,最终归纳出列方程解实际问题的一般步骤,在解题中有效拓展了学生的思维能力。)
三、故事延伸——参观景点
接下来同学们来到了临沂市展览馆,遇到了下面的问题:
问题3:有5名教师和同学们一起去参观临沂市展览馆,教师按全票价每人7元,学生只收半价。如果门票总价共206.5元,那么有多少名学生?
师:请同学们先独立写出过程
(等绝大多数学生完成后,提问学生解题过程,师板演,引导:怎么设未知数?如何选择一个合适的量?用的是哪两种方法表示的?答案是否正确?)
师:现在同学们能否归纳出列方程解决实际问题的一般步骤呢?组内讨论。
生4:先认真读题,理解题意,找出等量关系 生5:选择一个合适的量,设未知数
生6:用两种不同的方式表示,用等号连接 生7:最后解答
师补充:很好,但有时我们要检查一下所求得的值是否符合实际情况,然后作答。
最后:师生共同总结,①审②设③列④解⑤验⑥答
(设计意图:以故事的形式,较自然的引入新问题,归纳出列方程解决实际问题的一般步骤有效的拓展了学生思维,有利于培养学生的发散性思维能力。)
四、回程途中
师:在回程中,同学们坐在车里,老师出了这样一道题。
问题4:甲、乙两人从A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶,出发经3小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地。问甲、乙行驶的速度分别是多少?
师:这是哪种类型的应用题? 生1:相遇问题
生2:行程问题中的相遇问题
师:很好,行程问题,在行程问题中3个基本数量是什么? 生(众):路程、速度、时间 师:有什么关系? 生(众):路程=速度×时间,速度=路程÷时间,时间=路程÷速度
师:对于行程问题,我们通常借助什么数学工具分析数量之间的关系?
生3:画线段图
师:好,那么我们一起画出此题的线段示意图吧!(师生合作,画出线段图)
师:如何设未知数?
生4:设甲的速度为x千米/时。师:恩,乙的速度如何表示呢?
生4:因为3小时乙比甲多行了90千米,所以1小时比甲多行了30千米,即乙的速度可表示为(x+30)千米/时。
师:非常好,可是选择哪个量,列方程呢?路程?速度?还是时间?
组1:我们组选择A、B两地之间的路程,得:4(x+30)=3(x+x+30)(师板演)组3:我们组选择相遇前甲行驶的路程:3x=1×(x+30)(师板演)组4:我们组选择相遇前乙行驶的路程:3(x +30)=4(x+30)-3x(师板演)(师组织全班学生讨论)
师:解完此题,看看有何启发?小组讨论。
师总结:①在本题中,线段图可以使我们更简明地理清实际问题中的数量关系②一题多解,开阔了我们的视野③此题,速度为所求,用x表示,时间给出具体值,是已知;则可用路程来列方程。即在行程问题中:已知一个量,设出一个量,剩下一个量列方程。
反思:以故事为主线,对问题进行拓展,变式练习,拓展视野,同题归类。
问题5:学习了以上知识,你是不师想大展身手呢?
将学生分成两组:组
1、组
3、组5为一大组,组
2、组
4、组6为一大组(也可男生、女生)以竞争的形式完成课后三道练习题。
过程略„„
设计意图:通过分组竞争的形式完成习题,目的师激发和调动学生学习数学的积极性,使学生进一步掌握应用题的分析思路和解决方法,通过习题的讲评,达到查漏补缺的目的。
五、小结
师:通过本节课的学习,你有哪些收获? 生:„„
设计意图:引导学生对所学知识、方法惊醒归纳,总结
使学生体会列方程解应用题的优越性,列方程的实质,掌握其中的规律。
教后反思:
① 小学里,学生接触过应用题,在初中阶段,有的学生还是钟情于算术方法。本节课让学生真正领略方程的代数思维不同于算数思维。
② 以外出游览的故事为主线,突出课堂的故事性 ③ 一题多解,同题归类,拓展了学生的思维能力
④ 渗透助人为乐的德育目标,体现了数学教学的人文性
《一元一次方程》教学设计永兴镇双龙中学王辉2014-8-25《一元一次方程》教学设计教学目标:1、知识与技能:理解一元一次方程及解的概念,会检验一个数是不是某个方程的解;会根据数......
《一元一次方程》教学设计一.教学目标:(1)知识与技能目标:掌握一元一次方程的概念及解的概念,懂得判断所给方程是否为一元一次方程。会根据数量关系或简单问题情境列一元一次方程......
刀豆文库小编为你整合推荐5篇一元一次方程教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
一元一次方程教学设计宋延杰2012年12月5日一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方......
§5.1 一元一次方程教学设计 张家口市第九中学 焦红玲各位老师,下午好!今天我说课的内容是北师大版七年级数学上册第五章一元一次方程第一节《认识一元一次方程》。下面我将......