复变函数教案(双语)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“复变函数教案”。
复变函数论课程教学实施方案
章节、名称:第一章,第1、2、3节,I Complex number field, 1.1 Sums and products, 1.2 Operation, 1.3 Modulus and arguments 课时安排:2 教学方式:理论讲授 教学目的和要求:
重温熟悉复数的概念,熟练掌握复数的四则运算及共轭运算,了解复平面,理解复数的几何表示及其应用。
教学内容及重点、难点:
介绍课程理论框架: Chapter I Complex number field Chapter II Analytic Functions Chapter III Elementary Functions Chapter IV Integrals Chapter V Series Chapter VI Residues Chapter VII Applications of Residues 第一章 Complex number field 介绍复数的背景知识,复数的代数表示、代数运算、几何表示。1.Complex numbers 2.operations;Grip the operations, representations and the triangle inequality of complex numbers;3.Complex plane, moduli and arguments of complex numbers;授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:(1)复数为什么不能比较大小?(2)复数可以用向量表示,则可以认为与向量运算相同? 作业:P7 Exercises 1(a)参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第一章,第4、5、6节,I Complex number field, 1.4 Conjugate, 1.5 Exponential form, 1.6 Regions in complex plane 课时安排:2 教学方式:理论讲授 教学目的和要求:
掌握复数的共轭、乘幂与方根的运算,了解复平面中的区域概念。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Roots of complex numbers and applications;Use masterly the root formulas of complex numbers.2.Point sets and regions on the complex plane.Understand the concepts of point sets, regions;授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:复数的方根与实数的方根有何区别? 作业:P26 Exercises 1 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第二章,第1、2、3节,II Analytic functions, 2.1 Functions of a complex variable, 2.2 Limits, 2.3 Continuous functions 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解复变函数的定义,极限以及连续性的定义。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Definitions of complex variable functions and their mapping properties;Grip the definitions of functions with complex variables;2.Limits , continuity of complex variable functions;Understand the definitions of limits, continuity of functions with complex variables;授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:复变函数的极限定义与实变函数的极限定义有何区别? 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第二章,第4、5节,II Analytic functions, 2.4 Derivatives, 2.5 Analytic functions 课时安排:2
教学方式:理论讲授 教学目的和要求:
熟悉导数与解析函数的定义,掌握解析函数的判定,掌握柯西-黎曼条件。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Derivatives of complex variable functions;Understand the definitions of derivative of functions with complex variables;2.Cauchy-Riemann equations(C-R conditions);Grip how to determine the analytics of functions by using C-R conditions.3.Concepts and basic properties of analytic functions.授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:复变函数解析与可导的区别? 作业:P74 Exercises 1(a),2(c)参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第三章,第1、2节,III Elementary functions, 3.1 Exponential functions, 3.2 Logarithm 课时安排:2 教学方式:理论讲授 教学目的和要求:
掌握基本初等函数指数函数、对数函数的定义,理解基本初等函数的性质。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Definitions of Exponential functions and their basic properties;Grip the definitions, basic properties and related identities of exponential functions.Wedefineezexiyexeiyex(cosyisiny).2.Concepts and basic properties and related identities of logarithmic functions;Logzln|z|iArgz授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:指数函数为什么那样定义? 作业:P88 Exercises 1,2(c)参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第三章,第3、4节,III Elementary functions, 3.3 Power function, 3.4 Trigonometric functions 课时安排:2 教学方式:理论讲授 教学目的和要求:
掌握基本初等函数幂函数、三角函数的定义,理解基本初等函数的性质。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Complex power functions and related properties;Grip the definitions, basic properties and related identities of power functions;zcecLogz,2.Concepts and related identities of trigonometric functions.Be familiar with trigonometric function, and grip the difference and relation between it and real function.授课实施方案: Wedefineeizeizeizeizcosz,sinz22iremark:sinzandcoszarenotboundedonC;启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。
讨论、思考题、作业:
思考:为什么后定义幂函数和三角函数? 作业:P94 Exercises 1(a),2(c)参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第四章,第1、2、3节,IV Integrals, 4.1 Path, 4.2 Integrals of complex-valued functions, 4.3 Primitives 课时安排:2 教学方式:理论讲授 教学目的和要求:
理解复积分的概念,掌握复积分的性质及一般计算法。了解复变函数的原函数和变上限积分函数。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。引进积分 f(z)Cdz1.Definitions and basic properties of integrals of complex variable functions;Grip the definitions, basic properties and calculation methods of the integrals of functions following a finite of smooth curves in complex plane;2.Primitive functions ForafunctionfdefinedonadomainD,ifafunctionF(z)satisfyF(z)f(z)forallzD,thenwe
callFaprimitivefunctionoff.NLFormula:SupposethatfiscontinuousondomainD andhasaprimitivefunctionFinD.IfCisasimplepath fromz1toz2lyinginD,thenCf(z)dzF(z2)F(z1).授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、结合例子分析。讨论、思考题、作业:
思考:复变函数的积分对应数学分析中哪种积分? 作业:P120 Exercises 1(a),2(b)参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第四章,第4节,IV Integrals, 4.4 Cauchy Integral Thoerem 课时安排:2 教学方式:理论讲授 教学目的和要求:
掌握复数的共轭、乘幂与方根的运算,了解复平面中的区域概念。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Cauchy Integral Thoerem: IffisanalyticinasimplyconnecteddomainD,then Cf(z)dz0foreverysimpleclosedcurveCD.2.Proof of Cauchy Integral Thoerem 3.Generalization: fisanalyticinamultiplyconnecteddomainDwithboundaryC,C1,C2,,Cn.Ck(k1,2,,n)are simpleclosedpathsinteriortoC.If ThenCf(z)dzk1nCkf(z)dz.授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:Cauchy定理成立满足的条件? 作业:P150 Exercises 1 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第四章,第5节,IV Integrals, 4.4 Cauchy Integral Formula 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解Cauchy公式的背景,牢记Cauchy公式成立的条件,并会熟练使用Cauchy公式求解部分封闭曲线积分。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Introduce Cauchy Integral Formula LetfbeanalyticinsideandonasimpleclosedpathC,1f(z)dz.thenforanyz0interiortoC,wehavef(z0)2iCzz02.Genaralization of Cauchy Integral Formula Iffisanalyticinamultiplyconnecteddomain DwithboundaryC,C1,C2,,Cn.Ck(k1,2,,n)aresimpleclosedpathsinteriortoC.Thenforanyz0D,1f(z)1nf(z)wehavef(z0)dzdz.CzzCk2i2izz0k10 3.Examples 授课实施方案: 启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业: 思考:被积函数在积分曲线上有奇点可否使用Cauchy Formula? 作业:Homework 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第四章,第4节,IV Integrals, 4.6 Derivatives of Analytic Functions 课时安排:2 教学方式:理论讲授 教学目的和要求:
牢记高阶导数公式的条件、内容,并会熟练使用高阶导数公式求解部分封闭曲线积分,熟悉解析函数可导的性质。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Derivatives of Analytic Functions IffisanalyticinsideandonasimpleclosedpathC,thenforn0,1,2,,wehaven!f()(n)f(z)2iC(z)n1d,zins(C).2.Properties of analytic function Iffuivisanalyticatz,thenuandvhavecontinuouspartialderivativesofallordersatz.3.Morera Theroem LetfC(D), foranyclosedpathCD.fisanalyticinD.4.Liouville’s Theorem Cf(z)dz0,Iffisentireandboundedin,thenfisconstant.授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:为什么实变函数可导不一定无穷阶可导? 作业:P156 Exercises 2,4 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第五章,第1节,V Series, 5.1 Convergence of Series, 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解常数项复变级数的定义,收敛的定义及定义判别法,绝对收敛。知道实常数项级数与复常数项级数的联系。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Definitions and convergence of series of complex numbers;Let{zn}beasequence,thenz1z2zn iscalledaseriesofcomplexnumbers.zn1nn1 zniscallledabsolutelyconvergentif|zn1n|converges.授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识,由芝诺悖论引入级数。讨论、思考题、作业:
思考:复变中的绝对收敛和实变的区别? 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第五章,第2节,V Series, 5.2Taylor Expansion, 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解Taylor级数的定义。理解解析函数的Taylor级数展式,并会熟练使用Taylor展开定理求解简单初等函数的Taylor展式。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Taylor Expansion;Supposethatf(z)isanalyticinU:|zz0|R,(n)f(z0)nthenf(z)n(zz0)inU,wheren.n!n02. Taylor Expansion of elementary function: nzez,n0n!1,1zRemember and use the power expansions of exp(z), sin(z)and cos(z);授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:Taylor 展开公式是否方便求Taylor级数展式? 作业:P175 Exercises 3,10,12 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第五章,第3节,V Series, 5.3Laurent Expansion, 课时安排:2 教学方式:理论讲授 教学目的和要求:
熟悉Laurent级数展开定理,并会熟练使用间接法求初等函数的Laurent级数展式。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Definitions of Laurent expansion: f(z)A(D),whereD:0R1|zz0|R2,n21(zz)(zz)(zz)n02010n01(zz0)2(zz0)2 thenf(z) inD,wheren 1f(z)dz,(n0,1,2,),n1C2i(zz0)andC:|zz0|,(R1R2).2.Find Laurent expansion by known formula: 授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:为什么Laurent展开公式很难使用还要作为定理存在? 作业:P184 Exercises 4,6 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第五章,第4节,V Series, 5.4Power Series, 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解幂级数的定义、收敛性质。会求解幂级数的收敛半径,确定幂级数的收敛区域。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Properties of power series Ifapowerseries n(zz)convergesforpointn0n0zz1(z0),thenitisaboslutelyconvergentateachzin|zz0||z1z0|.2.Radius of convergenceof power series;RadiusofconvergenceRsup{|zz|:(zz)converges}.0n0 n0Rlimn|n||n1|授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:幂级数的收敛区域会是方形吗? 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第六章,第1节,VI Residues and Poles, 6.1 Residues 课时安排:2 教学方式:理论讲授 教学目的和要求:
理解留数的定义,清楚Laurent展式与级数的关系,并会熟练利用函数的Laurent级数展式求留数。熟记留数定理,并会熟练使用留数定理求积分。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Definitions of Residue: Isolatedsingularpointz0:f(z)A(0|zz0|)1Res(f,z0)1f(z)dz.c2i2.Residue Theorem: LetCbeasimpleclosedpath.IffisanalyticinsideandonCexceptforafinitenumberofisolatedsingularpointzk(k1,2,,n)insideC,thencf(z)dz2iRes(f,zk).k1n授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:孤立奇点隐含哪些条件? 作业:P213 Exercises 1(a)(c)参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第六章,第2节,VI Residues and Poles, 6.2 Three Types of Isolated Singular Points 课时安排:2 教学方式:理论讲授 教学目的和要求:
理解三种孤立奇点的定义,会熟练使用定义法、极限法判别孤立奇点的种类。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Removable singular point: limf(z)exists.zz02.Pole and order: limf(z).zz0lim(zz0)mf(z)m0.zz03.Eential singular point: limf(z)doesnotexist().zz0授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:有理分式函数的奇点一定是极点吗? 作业:P217 Exercises 1 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第六章,第3节,VI Residues and Poles, 6.3 Residue at Poles 课时安排:2 教学方式:理论讲授 教学目的和要求:
会熟练使用极限公式求极点处的留数,进而求封闭曲线积分。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Removable singular point: 2.Pole and order: Ifz0isapoleofordermoff(z),(z0)thenRes(f,z0)(m1)!(m1)[(zz0)mf(z)](m1)|zz0(m1)!.z0isremovable, z0isapoleoforderm, (m1)(z0)[(zz0)mf(z)](m1)|zz 10.(m1)!0(m1)!3.Eential singular point: 10.z0isremovable,m(m1)[(zz)f(z)]|zz00 z0isapoleoforderm,1(m1)! 1?z0iseential,授课实施方案: 启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:求留数,极限法简单还是定义法简单? 作业:P222 Exercises 4 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第六章,第4节,VI Residues and Poles, 6.4 Zeros of analytic function, 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解解析函数零点以及阶的定义,零点与极点的关系,阶的关系,理解解析函数零点的孤立性。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Zeros of analytic function f(z)A(z0),f(z0)0,thenthepointz0isazerooff(z).Iff(k)(z0)0(k1,2,,m1),andf(m)(z0)0,2.Zeros of analytic function Relation betweenZeros and Poles 3.Zeros of analytic function Uniquene of Zeros of analytic function 授课实施方案:
启发式教学法,以讲授为主,讲练结合。讨论、思考题、作业:
思考:为什么对于解析函数在线段上为零等价于在邻域内为零? 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第七章,第1节,VII Application of Residues 7.1 Evaluation of Improper integrals 课时安排:2 教学方式:理论讲授 教学目的和要求:
复习反常积分的定义,了解如何将实积分转化为封闭曲线积分,掌握利用留数求无穷积分的方法。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Definitions of Improper integral: 2.Hold adroitly the basic idea of evaluating improper integrals by theory of residues;f(x)dxlimRf(x)dx+lim0f(x)dx.R220R1R1RRf(x)dx=?Ccf(z)dzRRf(x)dx+CRf(z)dz=f(z)dzf(x)withoutsingularpointsonxaxis.授课实施方案:
启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,适当增加课外知识、实例分析。讨论、思考题、作业:
思考:无穷积分的积分限为什么要对称? 作业:P246 Exercises 2,3,6 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第七章,第2节,VII Application of Residues 7.2 Improper integrals from Fourier analysis 课时安排:2 教学方式:理论讲授 教学目的和要求:
了解Fourier分析中此类积分的作用,理解Jordan’s Lemma,掌握利用留数求解此类积分的方法。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1.Improper integrals from Fourier analysis,f(x)eiaxdxf(x)(cosaxisinax)dx2.Evaluating improper integrals by theory of residues: 授课实施方案: f(x)eiaxdx+limRCRf(z)eiaxdz=f(z)eiazdzC启发式教学法,以讲授为主,讲练结合。注重知识背景的阐述,解释Fourier分析的应用,为什么要求解此类积分。讨论、思考题、作业:
思考:为什么不直接求解三角函数形式的无穷积分? 作业: P252 Exercises 1,4 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第七章,第3节,VII Application of Residues 7.3 Definite integral involving Sin and Cos 课时安排:2 教学方式:理论讲授 教学目的和要求:
回忆三角函数定积分的计算,掌握利用留数计算特定三角函数积分的值。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Definite integral involving Sin and Cos: 20R(sint,cost)dteitz|z|1f(z)dz2iRes(f,z0)2.Examples 授课实施方案: CalculateI20dt,(a1).asint启发式教学法,以讲授为主,讲练结合。讨论、思考题、作业:
思考:将区间映射为圆的半径必须是1吗? 作业: P262 Exercises 1 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.章节、名称:第七章,第3节,VII Application of Residues 7.4 Argument Principle and Rouche’s Theorem 课时安排:2 教学方式:理论讲授 教学目的和要求:
理解亚纯函数的定义,了解辅角与绕原点的圈数的关系,掌握辅角原理,掌握儒歇定理,会使用儒歇定理求方程根的个数。教学内容及重点、难点:
回顾总结上一节知识要点,解答思考题。1. Argument Principle Meromorphic function 1 Cargf(z)ZP,22.Rouche’s Theorem f and g are analytic inside and on a simple closed curve C, | f(z)||g(z)|onC,thenfandfghavethesamenumberofzerosinsideC.授课实施方案:
启发式教学法,以讲授为主,讲练结合。讨论、思考题、作业:
思考:将区间映射为圆的半径必须是1吗? 作业:P270 Exercises 2(b),3(c),4 参考资料:
1.Cao Huai-Xin, Zhang Jiang-Hua, Chen Zheng-Li, Ren Fang, An Introduction to Complex Analysis,Xi'an:Shaanxi Normal University Pre, 2006.2.Conway J.B., Functions of one Comp1ex Variable,Springer-Verlag, New York Inc., 1978 3.Yu Jia-Rong, Theory of complex variable functions, Beijing: Advanced Education Pre, 2000.
第七章 共形映射教学课题:第三节黎曼存在定理教学目的:1、充分理解黎曼存在定理极其重要意义;2、充分了解边界对应定理;3、了解线性变换的不动点;4、掌握线性变换的保形性、保圆......
第一章复数与复变函数教学课题:第一节 复数教学目的:1、复习、了解中学所学复数的知识;2、理解所补充的新理论;3、熟练掌握复数的运算并能灵活运用。教学重点:复数的辐角 教学难......
复变函数小结 第一章 复变函数1)掌握复数的定义(引入),知道复数的几何意义(即复数可看成复数平面的一个点也可以表示为复数平面上的向量) 2) 掌握 复数的直角坐标表示与三角......
班级活动策划一、活动目的圣诞节是基督教徒纪念耶稣的诞生的节日,是一个西方的节日,但是近年来,它却为越来越多的中国人所接受,并且渐渐被赋予了许多中国式的特色和内容。为了丰......
2。判断极点 就是看使分母为零的数,比如 sinz/z这道题0就是他的极点 再比如,sinz/z的4次幂 0是分母的4阶极点,但是同时也是分子的1阶,所以 0是分式的3阶极点~~~当0是分母的三级......