《不等式与不等式组》复习教案_不等式复习课教案

教案模板 时间:2020-02-27 13:41:23 收藏本文下载本文
【www.daodoc.com - 教案模板】

《不等式与不等式组》复习教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“不等式复习课教案”。

《不等式与一次不等式组》 全章复习与巩固(提高)知识讲解

要点

一、不等式

1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子要点诠释:

(1)不等式的解:能使不等式成立的未知数的值

(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 解集的表示方法一般有两种:

1、用最简的不等式表示,例如xa,xa等;

2、是用数轴表示,如下图所示:

(3)解不等式:求不等式的解集的过程

2.不等式的性质:

基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.

用式子表示:

如果a>b,那么a±c>b±c 基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

用式子表示:

ab如果a>b,c>0,那么ac>bc(或).

cc 基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.

用式子表示:

ab如果a>b,c<0,那么ac<bc(或).

cc要点二、一元一次不等式

1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1 要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式. 2.解法:

解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.教师寄语: 没有付出,那来收获 没有努力,何来成绩

心态不改变,成绩怎会变 坚持才会成功

要点诠释:不等式解集的表示:在数轴上表示不等式的解集,注意的是“三定”:

一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:

(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;

(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”

“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;

(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:

列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组

一元一次不等式组:关于同一未知数的几个一元一次不等式合在一起。要点诠释:

(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等

式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取

所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:

①根据题意构建不等式组,解这个不等式组; ②由不等式组的解集及实际意义确定问题的答案.

【典型例题】

1.若x是非负数,则用不等式可以表示为()A.x>0

B.x≥0

C.x<0

D.x≤0 解析:x为非负数,即x是正数或零,即x>0或x=0.答案:B 2.亮亮在“联华超市”买了一个三轮车外轮胎,看见上面标有“限载280 kg”的字样,由此可判教师寄语: 没有付出,那来收获 没有努力,何来成绩

心态不改变,成绩怎会变 坚持才会成功

断出该三轮车装载货物重量x的取值范围是()A.x<280 kg

B.x=280 kg

C.x≤280 kg

D.x≥280 kg 解析:“限载280 kg”是指最大载重量为280 kg,即不能超过280 kg.答案:C 3.如图9-1-1,则x____________80.图9-1-1 解析:因为左边比右边重,所以x>80.答案:>

4.不等式的两边加上或减去同一个数(或式子),不等号的方向_____________;不等式的两边同时乘以或除以同一个_____________,不等号的方向不变; 不等式的两边同时乘以或除以同一个_____________,不等号的方向改变.答案:不变

正数

负数

10分钟训练(强化类训练,可用于课中)1.下面的式子中不等式有_____________个.()①3>0 ②4x+3y>0 ③x=3 ④x-1 ⑤x+2≤5

A.2

B.3

C.4

D.5 解析:用符号“>”“≠”“≥”“<”“≤”连接的式子叫不等式,所以①②⑤是不等式.答案:B 2.无论x取何值,下列不等式总成立的是()A.x+5>0

B.x+5<0 C.-(x+5)2<0

D.(x+5)2≥0 解析:根据任意数的平方都是非负数,所以(x+5)2≥0.答案:D 3.由a>b,得到ma<mb,则m的取值范围是()A.m>0

B.m<0

C.m≥0

D.m≤0

解析:根据“不等式的两边同时乘以或除以同一个负数,不等号的方向改变”,得m<0.答案:B 4.用不等式表示“长为a+b,宽为a的长方形面积小于边长为3a-1的正方形的面积”: _________.解析:长方形的面积=长×宽,正方形的面积=边长×边长.答案:a(a+b)<(3a-1)2 5.3x2n-7-3>n1是关于x的一元一次不等式,则n=_____________.2解析:根据一元一次不等式的定义可得2n-7=1,所以n=4.答案:4 6.利用不等式的性质求下列不等式的解集,并在数轴上表示出来.(1)x-3<2;(2)11x>;(3)5x≥3x-2.24解:解关于x的不等式,就是利用不等式的性质将不等式逐步化为x<a或x>a的形式.(1)不等式两边加3,得x<5;(2)不等式两边乘以-4,得x<-2;(3)不等式两边减3x,得5x-3x≥-2,教师寄语: 没有付出,那来收获 没有努力,何来成绩

心态不改变,成绩怎会变 坚持才会成功

即2x≥-2;不等式两边除以2,得x≥-1.在数轴上表示不等式的解集要分清两点,一要分清实点和虚点(“≥”与“≤”用实点,“>”与“<”用虚点),二要分清方向(“≥”与“>”向右,“≤”与“<”向左).如图.7.若x<0,x+y>0,请用“<”将-x,x,y,-y连接起来.解:由x<0,x+y>0,可知y>0,且|y|>|x|,所以-x>0,-y<0.根据“两个负数,绝对值大的反而小”知-y<x,所以-y<x<-x<y.30分钟训练(巩固类训练,可用于课后)1.(2010吉林长春模拟,3)如图9-1-2所示,在数轴上表示不等式2x-6≥0的解集,正确的是()

图9-1-2 答案:B 2.设“”“”“”表示三种不同的物体,现用天平称了两次,情况如图9-1-3所示,那么、、这三种物体按质量从大到小的顺序排列应为()

图9-1-3 A.、、B.、、C.、、D.、、答案:B 3.(2010浙江绍兴模拟,7)不等式2-x>1的解集是()A.x>1

B.x<1

C.x>-1

D.x<-1 答案:B 4.已知△ABC中,a>b,那么其周长P应满足的不等关系是()A.3b<P<3a

B.a+2b<P<2a+b C.2b<P<2(a+b)

D.2a<P<2(a+b)答案:D 5.如图9-1-4,有理数a、b在数轴上的位置如图9-1-4所示,则或“<”).图9-1-4 答案:<

6.一个木工有两根长为40 cm和60 cm的木条,要另外找一根木条并钉成一个三角形木架,问第三根木条的长度x的取值范围是_________________厘米.答案:20<x<100 教师寄语: 没有付出,那来收获 没有努力,何来成绩

心态不改变,成绩怎会变 坚持才会成功

ab_________0(填“>”ab

7.用适当的符号表示下列关系:(1)a的3倍与b的1的和不大于3;5(2)x2是非负数;(3)x的相反数与1的差不小于2;(4)x与17的和比它的5倍小.解:(1)中不大于就是小于或等于,即“≤”;(2)中的非负数就是大于等于零,即“≥”;(3)不小于就是大于等于;(4)中关键词是“小”等.可得(1)3a+

1b≤3;5(2)x2≥0;(3)-x-1≥2;(4)x+17<5x.8.请写出一个含有“≤”的不等式的题目,并列出该题的不等式,能求出解集的求其解集.解:x的2倍与3与x差的和不大于7.列出不等式为2x+(3-x)≤7;2x+3-x≤7,x+3≤7,x≤4.9.你能比较2 0052010与2 006的大小吗? 为了解决这个问题,我们可先探索形如:n(n+1)和(n+1)n的大小关系(n≥1,自然数).为了探索其规律可从n=1、2、3、4、„这些简单的情形入手,从中观察、比较、猜想、归纳并得出结论.(1)利用计算器比较下列各组中两个数的大小:(填“<”“>”)

①12____________21;②23____________32;③34____________43;④45____________54;⑤56____________65.(2)试归纳出nn+1与(n+1)n的大小关系是:______________.(3)运用归纳出的结论,试比较2 0052010与2 006的大小.解:(1)通过计算可得<

>(2)经过观察、比较、猜想可归纳出, 当n=1,2时,nn+1<(n+1)n; 当n>3时,nn+1>(n+1)n.(3)根据规律,当n>3时,nn+1>(n+1)n,得0052 006>2 0062 005.10.某辆救护车向相距120千米的地震灾区运送药品需要1小时送到,前半小时已经走了50

千米,后半小时至少以多大的速度前进,才能保证及时送到? 解:设后半小时速度为x千米/时, 依题意,有1x+50≥120.21x≥70,x≥140.2故后半小时至少以140千米/时的速度前进才能保证及时送到.11.小明和小亮决定把省下的零用钱存起来,已知小明存了168元,小亮存了85元,从这个月开始小明每月存16元,小亮每月存25元,几个月后小亮的存款数能超过小明? 解:设x个月后小亮的存款数能超过小明,则第x个月后小明的存款数为(16x+168)元,小亮的存款数是(25x+85)元.所以由题意可得25x+85>16x+168,25x-16x>168-85,即9x>81,得x>9.故9个月后小亮的存款数能超过小明.教师寄语: 没有付出,那来收获 没有努力,何来成绩

心态不改变,成绩怎会变 坚持才会成功

12.两根长度均为a cm的绳子,分别围成一个正方形和一个圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长a应满足怎样的关系式?(2)如果要使圆的面积大于100 cm2,那么绳长a应满足怎样的关系式?(3)当a=8时,正方形和圆的面积哪个大?a=12呢?(4)你能得到什么猜想?改变a的取值再试一试.解:这是一个等周问题,所围成的正方形面积可表示为(a2a2),圆的面积可表示为π().42a2a2(1)要使正方形的面积不大于25 cm,就是()≤25,即≤25.4162

a2a2(2)要使圆的面积大于100 cm,就是π()>100,即>100.242

82822(3)当a=8时,正方形的面积为=4(cm),圆的面积为≈5.1(cm2),4<5.1,此时圆的面积大;

4161221222当a=12时,正方形的面积为=9(cm),圆的面积为≈11.5(cm2).1649<11.5,此时还是圆的面积大.a2a2(4)周长相同的正方形和圆,圆的面积大.本题中即>.164

教师寄语: 没有付出,那来收获 没有努力,何来成绩

心态不改变,成绩怎会变 坚持才会成功

不等式与不等式组教案

以下是查字典数学网为您推荐的不等式与不等式组教案,希望本篇文章对您学习有所帮助。不等式与不等式组本章知识是在学习了一元一次方程(组)的基础上研究简单的不等关系的.教......

不等式与不等式组(A3)

不等式组1、不等式组2x-4≤x+2,x≥3)的解集是()2、若关于x、y的二元一次方程组3x+y=1+a,的解满足x+y<2,则a的取值范围为________.x+3y=33、当a时,不等式(a—1)x>1的解集是x<1a1。4、如果不等......

一次不等式复习教案

《一次不等式与一次不等式组》复习教学设计审核:九年级数学组目标确定的依据: 课标要求:⑴结合具体问题,了解不等式的意义,探索不等式的基本性质。⑵能解数字系数的一元一次不等......

不等式组练习题

不等式组练习题(共5篇)由网友“五百毫升”投稿提供,下面是小编整理过的不等式组练习题,欢迎您阅读分享借鉴,希望对您有所帮助。篇1:不等式证明练习题 不等式证明练习题不等式证明......

不等式和不等式组复习教学设计

不等式和不等式组复习课教学设计一、设计思想:“不等式”是初中数学核心内容之一。就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问......

下载《不等式与不等式组》复习教案word格式文档
下载《不等式与不等式组》复习教案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文