等腰梯形的性质和判定教案
在教学工作者实际的教学活动中,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?以下是小编精心整理的等腰梯形的性质和判定教案,希望能够帮助到大家。
教学目标
1、掌握梯形、等腰梯形、直角梯形的有关概念
2、能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力
3、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想
教学重、难点
重点:等腰梯形的性质与判定定理的证明
难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线)
教学过程
一、复习提问
1、什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?
2、等腰梯形有哪些性质?它的性质定理是怎样证明的?
3、在研究解决梯形问题时的'基本思想和方法是什么?常用的辅助线有哪几种?
我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题。
二、引入新课
等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形。
例1已知:如图,在梯形ABCD中,AD∥BC,∠B=∠C
求证:梯形ABCD是等腰梯形
分析:要证等腰梯形,只需证DE=DC。(方法一)如图一,过点D作DE∥AB,并交BC于E,得∠DEC=∠B=∠C,所以得DE=DC;
(方法二)如图二,作高AE、DF,通过证Rt△ABE≌Rt△DCF,得出AB=DC;
(方法三)如图三,分别延长BA、CD交于点E,则△EAD与△EBC都是等腰三角形,所以可得结论。
由此我们想到梯形的性质定理:等腰梯形同底上的两底角相等。
例2求证:等腰梯形的两条对角线相等
已知:在梯形ABCD中,AD∥BC,AB=DC。求证:AC=BD。
分析:要证AC=BD,只要用等腰梯形的性质得出∠ABC=∠DCB,然后再利用△ABC≌△DCB,即可得出AC=BD。
解决梯形问题常用的方法
(1)“作高”:使两腰在两个直角三角形中;
(2)“移对角线”:使两条对角线在同一个三角形中;
(3)“延腰”:构造具有公共角的两个等腰三角形;
(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。
三、练习
课本练习1、2
四、小结
研究四边形问题,常常把它转化成研究三角形的问题,这就把一个有待解决的新问题转化为我们会解的问题。
五、作业
作业纸
刀豆文库小编为你整合推荐5篇等腰梯形的性质和判定教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
等腰梯形的性质:等腰梯形同一底上的两个内角相等。两腰相等,两底平行,对角线相等。等腰梯形中位线的长度是上下底边长度和的一半。扩展资料性质有哪些:1、等腰梯形同一底上的两......
数学“等腰梯形的判定”教案数学“等腰梯形的判定”教案教学目标1、通过探究深入理解等腰梯形的性质定理和判定定理.2、通过例题的教学了解常用的辅助线的作法,并能灵活运用......
刀豆文库小编为你整合推荐4篇数学“等腰梯形的判定”教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
九年级数学等腰梯形的性质和判定教学反思作为一位优秀的老师,我们都希望有一流的课堂教学能力,写教学反思能总结教学过程中的很多讲课技巧,那么你有了解过教学反思吗?下面是小编......