盈亏问题·教案 (二)_盈亏问题教案二

教案模板 时间:2020-02-27 10:41:49 收藏本文下载本文
【www.daodoc.com - 教案模板】

盈亏问题·教案 (二)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“盈亏问题教案二”。

盈亏问题 第 二 讲

一、兴趣导入(Topic-in): 趣味分享

麒麟飞到北极变什么啊?答案:冰激凌 世界上什么鸡跑的快?答案:肯德鸡块 一片大草地(植物)答案:梅花(没花)又一片大草地(植物)答案:野梅花 来了一群羊(水果)答案:草莓 来了一群狼(水果)答案:杨梅 来了一群狮子(体坛名将)答案:郎平 什么动物最没有方向感?答案:麋鹿(迷路)

二、学前测试(Testing): 问答题(口答)

1、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?

猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101(条),由盈亏问题公式得,有小猫:818(只),猫妈妈有810888(条)鱼.

三、知识讲解(Teaching):

基础知识及例题解析

盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.

可以得出盈亏问题的基本关系式:

(盈亏)两次分得之差人数或单位数(盈盈)两次分得之差人数或单位数(亏亏)两次分得之差人数或单位数

物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.【例 1】 王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?

【解析】 因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).———————————————————————————————————————————————————

苹果个数为13×7-5=86(个).桔子数为 13×3+4=43(个).答:有13个小朋友,86个苹果和43个桔子.【例 2】 阳光小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?

【解析】 每车多坐5人,实际是每车可坐56570(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;

(5565)515(辆),如果每车坐70人,还少70人,求有多少人和多少辆车?车数是(565)(151)980(人). 人数是65155980(人)或【例 3】 学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?

【解析】 每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如

5(人),由此可见,每一个房间增加532(人).两次安排人果住满人应该是53138(人),因此,房间总数是:38÷2=19(间),学生总数是:数总共相差23153192380(人),或者5195380(人).

【例 4】 国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?

【解析】 这是一道有难度的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完,这组条件中包含着两种摆花盆的情况——2人各摆4盆,其余的人各摆6盆.如果我们把它统一成一种情况,让每人都

(64)24(盆).因此,原问题就转化为:如果每人各摆6盆,那么,就可以多摆摆5盆花,还有3盆没人摆;如果每人摆6盆花,还缺4盆.问有多少少先队员,一共摆多少花盆?

(64)2](65)7(人),人数: [338(盆)或67438(盆). 盆数:573【例 5】 四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了 元钱.

【解析】 这笔钱买13千克芒果还差4元,若把这13千克芒果换成奶糖就会多出13226元,所以这笔钱买13千克奶糖会多出26422元.而这笔钱买15千克奶糖会多出2元,所以每千克奶糖的价格为:(222)(1513)10(元).辅导老师共带了10152152元.

四、强化练习(Training):

1、学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽———————————————————————————————————————————————————

毛球拍、乒乓球拍各多少副? 【解析】 因为羽毛球拍是乒乓球拍的2倍,如果每次分羽毛球拍5×2=10(副),最后应余下15×2=30(副),因为14-5×2=4(副),分到最后还差30副,所以比每次分10副总共差30+30=60(副),所以有小组:60÷4=15(组),乒乓球拍有:5×15+15=90(副),羽毛球拍90×2=180(副).2、用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【解析】 井的深度为:(5×2+4×3)÷(3-2)=22÷1=22(米).绳子长度为:(22+5)×2=27×2=54(米),或者(22-4)×3=18×3=54(米)

五、训练辅导(Tutor):

1、六年级学生出去划船。老师算了一下,如果每船坐6人,那么还剩下22人没船坐。安排时发现有3条船坏了,于是改为每船坐8人,结果还剩下6人没地方坐,请问:一共有多少学生?

如果3条船没有坏,每船坐8人,那么多余了83618个座位。根据盈亏问题公式,有船(1822)(86)20条,学生人数为20622142人。

2、乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.乐乐共存了多少钱?

【解析】 假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比

(52)28(个)一个2分币多3分,所以5分币有: 84;2分币有:282250(个).

所以乐乐共存钱:52825013614010036276(分)

六、反思总结(Thinking):

———————————————————————————————————————————————————

堂堂清落地训练——坚持堂堂清,学习很爽心

(总分100分)

1、智康学校五年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果? 【解析】 由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).2、幸福小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅.问:到会议室开会的少先队员有多少人? 【解析】 第二个条件可转化为:“每条长椅上坐7个人,则少21个人”,“多7人”与“少21人”两者相差72128(人),每条长椅要多坐734(人),因此就知道,共有2847(条)长椅,人数是73728(人).

3、学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人? 【解析】 每个房间住3人,则多出22人,每个房间多住5人,意味着就是每个房间住8个人,则空出1个房间,这1个房间如果住满人应该是188(人),由此可见,每一个房间增加835(人).两次安排人数总共相差22830(人),因此,房间总数是:3056(间),学生总数是:362240(人)

4、小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱? 【解析】 因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24(元),这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10(元),所以小明妈妈带的钱数是:12×10+4=124(元)

5、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑? 【解析】 这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。即:应该统一成每人挖6个树坑,形成统一的标准。那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。

———————————————————————————————————————————————————

盈亏问题教案

简单的盈亏问题一、教学目标:1、知道“盈”与“亏”的含义,了解“盈亏问题”的特征,感受数学问题的趣味性。2、在探索解决问题的过程中,学会解“盈亏问题”的方法,培养学生的逻辑......

盈亏问题教案

盈亏问题知识要点把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。 解答盈亏......

盈亏问题

专题简析: 盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象, 如果按某种标准分,则分配后会有剩余(盈) ;按另一种标准分,分配后又会有 不足(亏) ,求物品的数量和分配对......

盈亏问题

--盈亏问题内容点击:五年级第二学期 应用题例4 目标引领:1、会正确分析题目中较复杂的数量间的关系。2、会根据题目中的不变量列出方程解应用题。 课题研究目标: 结合学生实际,......

五年级盈亏问题教案

五年级教案教学内容:盈亏问题教学目标:1、熟练掌握盈亏问题的本质2、运用盈亏问题的解题方法解决一些生活中的实际问题 教学重点:盈亏问题的四类问题教学难点:盈亏问题中的这四......

下载盈亏问题·教案 (二)word格式文档
下载盈亏问题·教案 (二).doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文