空间频率滤波实验报告由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“空间滤波处理实验报告”。
空间频率滤波
空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。
一、实验目的1.了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解;
2.验证阿贝成像原理,理解成像过程的物理实质——“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响;
二、实验原理
1.傅里叶光学变换
设有一个空间二维函数g(x,y),其二维傅里叶变换为
G(,)g(x,y)exp[i2(xy)]dxdy(1)式中,分别为x,y方向的空间频率,而g(x,y)则为G(,)的傅里叶逆变换,即
g(x,y)G(,)exp[i2(xy)]dd(2)
式(2)表示,任意一个空间函数g(x,y)可表示为无穷多个基元函数exp[i2(xy)]的线性迭加,G(,)是相应于空间频率为,的基元函数的权重,G(,)称为g(x,y)的空间频谱。
用光学的方法可以很方便地实现二维图像的傅里叶变换,获得它的空间频谱。由透镜的傅里叶变换性质知,只要在傅里变换透镜的前焦面上放置一透率为g(x,y)的图像,并以相干平行光束垂直照明之,则在透镜后焦面上的光场分布就是g(x,y)的傅里叶变换G(,),即空间频谱G(xf,yf)。其中为光波波长,f为透镜的焦距,(x,y)为后焦面(即频谱面)上任意一点的位置坐标。
显然,后焦面上任意一点(x,y)对应的空间频率为
x/fy/f
2.阿贝成像原理
傅里叶变换光学在光学成像中的重要性,首先在显微镜的研究中显示出来。阿贝在1873年提出了相干光照明下显微镜的成像原理。他认为在相干平等光照明下,显微镜的成像过程可以分成二步。第一步是通过物的衍射光在透镜的后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干迭加而 形成物体的像,这是干涉所引起的“合成”作用。图1表示这下一成像光路和过程。
x
象平面
图1阿贝成像原理
成像的这二个过程,本质上就是两次傅里叶变换。第一个过程把物面光场的空间分布
g(x,y)变为频谱面上空间频率分布G(,),第二个过程则是将频谱面上的空间频谱分布
G(,)作傅里
叶逆变换还原为空间分布(即将各频谱分量又复合为像)。因此,成像过程经历了从空间域到频率域,又从频率域到空间域的两次变换过程。如果两次变换完全是理想的,即信息没有任何损失,则像和物应完全相似(除了有放大或缩小外)。但一般说来像和物不可能完全相似,这是由于透镜的孔径是有限的,总有一部分衍射角度大的高次成分(高频信息)不有进入到物镜而被丢弃了,所以像的信息总是比物的信息要少一些,像和物不可能完全一样。因为高频信息主要反应物的细节,所以,当高频信息受到孔径的阻挡而不能到达像平面时,无论显微镜有多大放大倍数,也不可能在像平面上分辨这些细节,这是显微镜分辨率受到限制的根本原因。特别当物的结构非常精细(如很密的光栅)或物镜孔径非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上虽有光照,却完全不能形成图像。
3.空间滤波
由以上讨论知,成像过程本质上是两次傅里叶变换。即从空间复振幅分布函数g(x,y)变为频谱函数G(,),然后再由频谱函数G(,)变回到空间函数g(x,y)(忽略放大率)。显然,如果我们在频谱面(即透镜后焦面)上人为地放一些模板(吸收板或相移板)以减弱
某些空间频率成份或改变某些频率成分的相位,便可使像面上的图像发生相应的变化,这样的图像处理称为空间滤波。频谱面上这种模板称为滤波器,最简单的滤波器是一些特殊形状的光阑,如图2所示。
(a)(b)(c)(d)
图 2简单的空间滤波器
图2中(a)为高通滤波器,它是一个中心部分不透光的光屏,它能滤去低频成分而允许高频成分通过,可用于突出像的边沿部分或者实现像的衬度反转;(b)为低通滤波器,其作 用是滤掉高频成分,仅让靠近零频的低频成分通过。它可用来滤掉高频噪声,例如滤去网板照片中的网状结构;(c)为带通滤器,它可让某些需要的频谱分量通过,其余被滤掉,可用于消除噪音;(d)为方向滤波器,可用于去除某些方向的频谱或仅让某些方向的频谱通过,用于突出图像的某些特征。
三、实验光路
实验光路如图3所示。其中L1,L2组成的倒装望远系统将激光扩展成具有较大截面的平行光束,透镜L为成像透镜。
图3实验光路图
四、实验内容
1.光路调节,按图3布置光路,并按以下步骤调节光路:
(1)调节激光束与导轨平行(调节时,可在导轨上放置一与导轨同轴的小孔光阑,当光阑在导轨上前后移动时,激光束始终能通过小孔即可)。
(2)将L1,L2放入光路并使它们与激光束共轴。调节L1与L2之间的距离使之等于它们的焦距之和以获得截面较大的平行光。
(3)将物和成像透镜L放入光路,调节L与物之间的距离使像面上得到一放大的实像。2.空间滤波
(1)在谱面上不放置任何滤光片,观察后焦面上的频谱分布及像面上的像。
(2)在频谱面上放置不同的滤波器,观察像变化情况并将观察到的图像记录在表中,对图像的变化作出适当的解释。
3.选作
将透明图案板作为物,观察后焦面上的频谱分布和像面上的像,然后在后焦面上放一高通滤波器挡住谱面中心,观察像面上的图像并解释之。
五、实验内容及结果
1.空间滤波
表空间滤波实验结果
2.选作部分
将透明图案板作为物,观察后焦面上的频谱分布和像面上的像,然后在后焦面上放一高通滤波器挡住谱面中心,观察像面上的图像并解释之。
实验现象:想面上出现圆圈图像,高通滤波器是一个中心部分不透光的光屏,它能滤过低频成分而能允许高频成分通过,本实验中突出像的边沿部分,故观察到频率比中间高的圆圈.五、实验结果分析
1.在单透镜系统中加入简单滤波器进行滤波之后,观察到得实验现象各不相同,(1)低通滤波器,它只允许位于频谱面中心及其附近的低通分量通过,去掉频谱面上离光轴较远的高频成份从而滤掉高频噪音,由于仅保留了离轴较近的低频成份,因而图像细结构消失,利用它可以消除图像上周期性的网格;
(2)高通滤波器,它阻挡低频分量而允许高频成份通过,可以实现图像的衬度反转或边缘增强,所以图像轮廓明显。若把高通滤波器的挡光屏变小,仅滤去零频成份,则可除去图像中的背景,提高图像质量,进行边缘增强;
(3)带通滤波器,它只允许特定空间的频谱通过,可以去除随机噪声,还可以对信号或缺陷进行检测,分离各种有用信息;
(4)方向滤波器,它仅通过(或阻挡)特定方向上的频谱分量,可以突出某些方向特征。
2.实验证明了阿贝成像理论的正确性:
像的结构直接依赖于频谱的结构,只要改变频谱的组分,便能够改变像的结构;像和物的相似程度完全取决于物体有多少频率成分能被系统传递到像面。
3.实验充分证明了傅里叶分析和综合的正确性:
(1)频谱面上的横向分布是物的纵向结构的信息;频谱面上的纵向分布是物的横向结构的信息;
(2)零频分量是直流分量,它只代表像的本底;
(3)阻挡零频分量,在一定条件下可使像的衬度发生反转;
(4)仅允许低频分量通过时,像的边缘锐度降低;仅允许高频分量通过时,像的边缘效应增强;
(5)采用选择型滤波器,可望完全改变像的性质
六、思考题
1.当光源换成白光光源时,仍用本实验所用的滤波器进行空间滤波,其结果如何? 答:会产生多个衍射斑,图像中间是白色的,而图像周边是彩色的。
七、实验总结
通过本次实验过程的实践和相关知识的学习,我们了解到了空间滤波的基本原理,以及方向滤波、高通滤波、低通滤波等滤波技术,对阿贝成像的物理现象有了更为直观的了解,对光在频谱方面的应用有了一个初步的了解,阿贝成像的理论在实际光通信等领域具有很强大的指导意义,我们可以通过频谱滤波器选择我们需要的信息部分,通过先分频再合成的方法传输信息。
根据实验老师的指导,我们认真预习,初步了解实验原理,查阅资料,并细心研究推导了有关实验公式,按老师的要求,做到心中有数,使实验有目的地,逐步地进行。做物理实验需要过人的毅力和耐心。本实验在调节图像时,我们遇到了不小的困难。我们发现,由于本实验光路很敏感以及对精度的高要求性,激光管以及光具座上的光学器件必须调水平,且光心在同一条直线上。经过不懈的调试,我们终于得到了傅里叶频谱,此后,我们按照书上的要求一步一步地进行了测量和记录,体会到了物理实验的逻辑性,感受到了实验与所学知识的结合。在今后的实验中,我们会吸取经验、总结不足、不断前进,努力使实验更加完美的。
实验报告一、实验目的和要求用逆滤波及其限制病态性的简单改进方法进行散焦模糊图像恢复实验 二、实验原理1、不考虑加性噪声时,图像的退化可以看成图像信息f(x,y)经过一个退......
有关EMI的一点常识滤波技术是抑制干扰的一种有效措施,尤其是在对付开关电源EMI信号的传导干扰和某些辐射干扰方面,具有明显的效果。任何电源线上传导干扰信号,均可用差模和共模......
课题:电容滤波滤波电路滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器,或与负载串联电感器,滤波是指当流过电感的电流变化时,电感线圈中......
数字图像处理:各种变换滤波和噪声的类型和用途总结一、基本的灰度变换函数 1.1.图像反转适用场景:增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色的面积在尺寸上......
浅谈中值滤波1.中值滤波的现状在数字信号处理和数字图像处理的早期研究中,线性滤波是主要的处理手段。线性滤波简单的数学表达式以及某些理想特性使其很容易设计和实现。然......