怎样理解函数是初中数与代数课程领域学习的主线_数与代数领域学习心得

其他范文 时间:2020-02-28 15:47:22 收藏本文下载本文
【www.daodoc.com - 其他范文】

怎样理解函数是初中数与代数课程领域学习的主线由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数与代数领域学习心得”。

怎样理解函数是初中数与代数课程领域学习的主线

初中“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。

就具体内容而言,初中数与代数涉及实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,数、形及实际问题中蕴涵的关系和规律的探索,一些有效地表示、处理和交流数量关系以及变化规律的工具等内容。期望通过学习,发展学生的符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。

初中阶段函数部分的内容,主要包括一次函数、二次函数、反比例函数,在这个阶段学习函数,重点就是要借助现实背景,在现实情景中理解函数的概念。而且在研究函数的性质过程当中,重点应该是要利用图象的方法直观地发现函数。例如一次函数有什么特点?二次函数有什么特点?反比例函数呢?此外还有一个非常重要的方面,就是体会函数各种表示之间的联系。例如函数的表示法,我们有表格表示,就是具体的看有一个 x 怎么和 y 对应,另外就是有解析式表示,还有图象表示。以前在传统的教学当中,可能这个解析式的表示我们用的比较多,表格、图象表示用的比较少,不管在标准的实验稿当中还是修订稿中,我们都要关注函数的图象表示,借助函数的图象来研究函数的性质,这是一种非常直观的办法。同时在这个修订版的标准当中,也强调了对自变量取值范围的讨论,应该结合具体的实际问题,在实际问题中讨论自变量取值范围,而不是说泛泛地、一般性地讨论自变量的定义域、值域。

函数是中学数学里第一个正式研究“变化”过程的内容,是研究运动变化的重要数学模型。《新标准》对函数内容具体地的学习要求如下:探索简单实例中的数量关系和变化规律,了解常量、变量的意义。结合实例,了解函数的概念和三种表示法,能举出函数的实例。能结合图像对简单实际问题中的函数关系进行分析。能确定简单实际问题中函数自变量的取值范围,并会求出函数值。能用适当的函数表示法刻画简单实际问题中变量之间的关系。结合对函数关系的分析,能对变量的变化情况进行初步讨论。

函数是非常有价值的内容,首先变量之间的关系在现实世界当中就是普遍存在的,如何研究变量之间的关系,从数学上解决这个问题,它的工具就是函数。所以对于学生来讲,利用函数的方法解决现实问题,实际上是从常量的数学走到变量的数学,像在方程中,x 表示未知数,它实际上不是变量,其实它是一个常量。在函数当中就不一样,它可能是自变量,也可能是因变量,所以从这个角度来讲,从学生的思维角度来讲,它是一种飞跃,而且通过变量的学习,学生可以逐渐地形成辩证唯物主义的思想。

通过变量之间关系的学习有助于培养学生的理性思维,因为学习函数,就要表示变量之间的关系,它有一个很重要的作用,就是利用函数的关系进行预测,或利用函数的关系进行计算,未知的点可以通过函数关系把它计算出来。我们预测人口,如中国二十年以后的人口数量问题,可以根据对以前人口的统计、对数量进行分析,根据它的变化规律来进行预测。进行计算也是函数非常重要的一个应用,我们根据函数的变化规律,看其中某一些位置的点的函数值是多少等等。另外由于在函数学习的过程当中,我们非常重视函数的图象表示,所以对培养学生的几何直观函数也是非常重要的载体。通过直观分析函数的性质,学生可以对函数的增减性,或者是周期性等等都能够有很好的认识。

从常量到变量数学的过渡阶段,学生从小学阶段就已经开始。到了初中阶段,学生又接触到一些新的知识,他们逐渐在丰富的自己的认识。如我们在教学中也曾经向学生出示这样的一些图象,向学生提出问题:这些图象都可以刻画什么?

不同的学生有着不同的一些想法。你能不能够在现实生活中找到这样的函数的一个实际背景或实例?例如第一个图象,学生可能会说是匀速行驶的汽车的时间和路程之间的关系,也有学生会举例子说,如果苹果一斤是 2 元钱,这个图表示的是苹果斤数和总价的关系,这些例子都是比较朴素的。不妨再来看看第八个图,有的学生会说,这个是向水桶中注水,最后达到了上限还要再注,时间与水面高度的关系;还有同学举例子说,将 20 度的水加热,加热到沸腾;有的学生是说从甲地出发到了某地之后,这个车坏了怎么修也修不好;还有的说是弹簧的承重有一个限度,但它超过这个限度之后,长度就已经超过了弹簧的承受能力,长度就不变了。当然这些所举的例子都还需要再斟酌。有的学生会说是小明的体温,开始逐渐上升,最后持续高烧,这也是一种可能的情境。有非常多的学生都提出自己的想法,用来解释以上图象,即是说他们能够从现实生活中挖掘出丰富的现实情景,去解释各种各样的函数关系,我想在这样一个过程中学生们就能真正体会到函数图象的价值。这是在用解析式表达、学习函数性质、应用函数解决问题等等之外的收获。可能我们首先应该让学生感受到的就是:函数离我们这么近,其实它就是这么普通。这样,函数的连续性、函数的取值范围等在学生的理解中也就更简化,更容易被他们所接受。

函数还有一个作用,体现在解方程中。即方程可用函数的方法去解,如果一个方程,我们不能用已学的的方法去解。例如三次方程,我们的学生还没有学,就不会解,但是我们可以画一下它的图象,然后就可以以此来大致的估计一下它的解的范围,对它的解形成一些初步的认识。实际上在初中,方程、不等式还都可以看成函数的一种特殊情况。

另外函数这一研究变量关系的方法,实际上对于其他的学科,如物理、化学、经济及一些文科都有非常重要的作用,都是非常有力的工具。因此学好函数这部分内容,搞好函数这部分的教学,在初中代数中是非常重要的。

一方面,在小学阶段,《新标准》就提出了“探索规律”的学习任务,这实际上就是函数学习的初期;另一方面,初中阶段的数学课程中,函数的定义也仅仅是采用了较为直观的“变量说”:一个变量的变化,引起另一个变量的变化,而没有采用抽象的“映射说”;同时,函数的三要素、函数的单调性,奇偶性等基本特性也没有系统提及;而只是要求结合具体的函数,有效地渗透,逐步揭示函数的直观、本质特征——联系和变化;但同时,《新标准》也突出了将函数作为初中代数内容主线的观点。所以,函数学习在初中阶段并不是一个“全新”的内容,需要关注其与小学阶段的延续性;同时,初中阶段的学习也不是理论性的,还是以直观研究为主;但需要介绍函数与方程、不等式等内容的联系。因此,函数是研究运动变化现象的重要数学模型,是初中代数的主线

怎样理解函数是初中数与代数课程领域学习的主线

我们采用的是北师版的教材,教材安排在七年级下册第六章安排了《变量之间的关系》,为函数奠定基础。在八年级上安排了《位置的确定》和《一次函数》,八年级下安排了《一元一次不......

怎样理解函数是初中数与代数课程领域学习的主线

怎样理解函数是初中数与代数课程领域学习的主线函数是初中数学数与代数领域非常重要的学习内容,它能集中体现数形结合思想、模型思想、转化思想等许多的数学思想方法,同时也渗......

怎样理解函数是初中数与代数课程领域学习的主线

怎样理解函数是初中数与代数课程领域学习的主线 函数是中学数学里第一个正式研究“变化”过程的内容,是研究运动变化的重要数学模型。《新标准》对函数内容具体地的学习要求......

抓住函数主线,统领初中数与代数内容

抓住函数主线,统领初中数与代数内容函数是初中数学数与代数领域非常重要的学习内容,是研究运动变化的重要数学模型,它能集中体现数形结合思想、模型思想、转化思想等许多的数学......

学习数与代数心得体会

刀豆文库小编为你整合推荐4篇学习数与代数心得体会,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

下载怎样理解函数是初中数与代数课程领域学习的主线word格式文档
下载怎样理解函数是初中数与代数课程领域学习的主线.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文