放缩法(不等式、数列综合应用)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数列不等式放缩法”。
“放缩法”证明不等式的基本策略
近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略。
1、添加或舍弃一些正项(或负项)
例
1、已知an2n1(nN*).求证:an1a1a2...n(nN*).23a2a3an
1ak2k11111111证明: k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232k
aa1a2n1111n11n1...n(2...n)(1n), a2a3an1232222322
3an1aan12...n(nN*).23a2a3an1
2若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到.2、先放缩再求和(或先求和再放缩)
例
2、函数f(x)=4x
14xk,求证:f(1)+f(2)+…+f(n)>n+
12n11(nN*).2证明:由f(n)= 4n14n=1-111 14n22n
22
11得f(1)+f(2)+…+f(n)>1112221122n 11111n(1n1)nn1(nN*).424222
此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3、先放缩,后裂项(或先裂项再放缩)
k
例
3、已知an=n,求证:∑<3.
k=1ak
n
证明:∑
k=
1n
n
2ak
∑
k=
1n
<1+∑
k=
2n
(k-1)k(k+1)
=1k2n
<1+∑
k=2
(k-1)(k+1)(k+1 +k
-1)=1+ ∑(k=2
n
-)
(k-1)
(k+1)
=1+1+<2+<3.
(n+1)2
2本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;
n
1例
4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k
1n
证明 0a1
n
11112,an1an,a2a12,a3.当k1时,0ak2a3, 241616
(akak1)ak
2k1
1n11(akak1)(a1an1).16k11632
本题通过对因式ak2放大,而得到一个容易求和的式子
5、逐项放大或缩小
(a
k
1n
k
ak1),最终得出证明.n(n1)(n1)
2an例
5、设an22334n(n1)求证: 22122n1
2证明:∵ n(n1)nnn(n1)(n)
2n
1∴ nn(n1)
13(2n1)n(n1)(n1)2
an∴ 123nan,∴
222
2n1
本题利用n,对an中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。
6、固定一部分项,放缩另外的项;
例
6、求证:
11117 122232n2
4证明:
1
n2n(n1)n1n
11111111151171()().122232n22223n1n42n4
此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分
别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
7、利用基本不等式放缩
例
7、已知an5n
41对任何正整数m,n都成立.1,只要证
5amn1aman.因为 amn5mn4,aman(5m4)(5n4)25mn20(mn)16,故只要证
5(5mn4)125mn20(mn)16 即只要证
20m20n37
因为aman5m5n85m5n8(15m15n29)20m20n37,所以命题得证.本题通过化简整理之后,再利用基本不等式由aman放大即可.8、先适当组合, 排序, 再逐项比较或放缩 例
8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m)>(1+n)
i
i
n
m
证明:(1)对于1<i≤m,且Aim =m·…·(m-i+1),Aimmm1Aimnn1mi1ni
1,同理,mmmnnnmini
由于m<n,对于整数k=1,2,…,i-1,有
nkmk,
nm
AinAim
所以ii,即miAinniAim
nm
(2)由二项式定理有:
22nn
(1+m)n=1+C1nm+Cnm+…+Cnm,22mm(1+n)m=1+C1mn+Cmn+…+Cmn,由(1)知
mAin
i
>nAim
i
(1<i≤m<n),而
Cim
AimiAin,Cn= i!i!
∴miCin>niCim(1<m<n)
00222211
∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,…,mmm+1m1mmCmCn>0,…,mnCnn>nCm,mn>0,2222nn1mm∴1+C1nm+Cnm+…+Cnm>1+Cmn+Cmn+…+Cmn,即(1+m)n>(1+n)m成立.以上介绍了用“放缩法”证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。希望大家能够进一步的了解放缩法的作用,掌握基本的放缩方法和放缩调整手段.
放缩法证明数列不等式基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。......
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......
龙源期刊网 http://.cn放缩法巧证数列不等式作者:贾莉来源:《卷宗》2012年第12期摘要:数列不等式的证明问题,既是中学数学教学的重点、难点,也是高考的热点。近年来的高考中,屡屡......
数列不等式放缩技巧 何谓放缩?就是当要证明不等式Ai1n简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。【知识技巧】1、放缩的几种形式:①构造特殊数列求和进......
数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高......