必修五基本不等式 知识点_必修五不等式知识点

其他范文 时间:2020-02-27 16:03:40 收藏本文下载本文
【www.daodoc.com - 其他范文】

必修五基本不等式 知识点由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“必修五不等式知识点”。

第三章:不等式、不等式解法、线性规划

1.不等式的基本概念

不等(等)号的定义:ab0ab;ab0ab;ab0ab.2.不等式的基本性质

(1)abba(对称性)(2)ab,bcac(传递性)

(3)abacbc(加法单调性)

(4)ab,cdacbd(同向不等式相加)

(5)ab,cdacbd(异向不等式相减)(6)a.b,c0acbc

(7)ab,c0acbc(乘法单调性)

(8)ab0,cd0acbd(同向不等式相乘)

(9)ab0,0cd11ab(异向不等式相除)(10)ab,ab0(倒数关系)abcd

(11)ab0anbn(nZ,且n1)(平方法则)

(12)ab0ab(nZ,且n1)(开方法则)

练习:(1)对于实数a,b,c中,给出下列命题:

①若ab,则acbc;②若acbc,则ab;

③若ab0,则aabb;④若ab0,则

⑤若ab0,则22222211; abba;⑥若ab0,则ab; ab

ab11⑦若cab0,则;⑧若ab,,则a0,b0。cacbab

其中正确的命题是______

(答:②③⑥⑦⑧);

(2)已知1xy1,1xy3,则3xy的取值范围是______

(答:13xy7);

(3)已知abc,且abc0,则

3.几个重要不等式

(1)若aR,则|a|0,a20

(2)若a、bR,则ab2ab(或ab2|ab|2ab)(当仅当a=b时取等号)

(3)如果a,b都是正数,那么

c1的取值范围是______(答:2,)2a2222ab.(当仅当a=b时取等号)2极值定理:若x,yR,xyS,xyP,则:

1如果P是定值, 那么当x=y时,S的值最小;○

2如果S是定值, 那么当x=y时,P的值最大.○

利用极值定理求最值的必要条件: 一正、二定、三相等

.(4)若a、b、cR,则abca=b=c时取等号)

3ba(5)若ab0,则2(当仅当a=b时取等号)ab

(6)a0时,|x|ax2a2xa或xa;|x|ax2a2axa

(7)若a、bR,则||a||b|||ab||a||b|

4.几个著名不等式

(1)平均不等式:如果a,b都是正数,那么

ab(当仅当a=b时取等号)2ab

即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):

2ab2a2b2ab2a2b2))ab)特别地,ab((当a = b时,(2222

a2b2c2abc(a,b,cR,abc时取等)33

222幂平均不等式:a1a2...an21(a1a2...an)2 n

注:例如:(acbd)2(a2b2)(c2d2).1111111常用不等式的放缩法:①2(n2)

nn1n(n1)nn(n1)n1n

n1)

(2)柯西不等式: 若a1,a2,a3,,anR,b1,b2,b3,bnR;则

2222222(a1b1a2b2a3b3anbn)2(a1a2a3an)(b12b2b3bn)aaaa当且仅当123n时取等号b1b2b3bn

(3)琴生不等式(特例)与凸函数、凹函数

若定义在某区间上的函数f(x),对于定义域中任意两点x1,x2(x1x2),有

x1x2f(x1)f(x2)xxf(x1)f(x2))或f(12).222

2则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法

比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法 f((1)整式不等式的解法(一元一次不等式、一元二次不等式、一元高次不等式)根轴法:

步骤:正化,求根,标轴,穿线(奇穿偶回),定解.特例① 一元一次不等式ax>b解的讨论;

2②一元二次不等式ax+bx+c>0(a≠0)解的讨论.a0x1x20x1x2 a000

(2)分式不等式的解法:先移项通分标准化,则

f(x)g(x)0 f(x)f(x)0f(x)g(x)0;0g(x)g(x)g(x)0

(3)无理不等式:转化为有理不等式求解

1f(x)0定义域 g(x)0f(x)g(x)

f(x)0f(x)0或g(x)02f(x)[g(x)] ○2f(x)g(x)g(x)0

f(x)03f(x)g(x) ○g(x)02f(x)[g(x)]

(4).指数不等式:转化为代数不等式

af(x)ag(x)(a1)f(x)g(x);

(5)对数不等式:转化为代数不等式 af(x)ag(x)(0a1)f(x)g(x)af(x)b(a0,b0)f(x)lgalgb

f(x)0logaf(x)logag(x)(a1)g(x)0;

f(x)g(x)f(x)0 logaf(x)logag(x)(0a1)g(x)0f(x)g(x)

(6)含绝对值不等式

1应用分类讨论思想去绝对值;○2应用数形思想; ○

3应用化归思想等价转化 ○

g(x)0|f(x)|g(x)g(x)f(x)g(x) g(x)0|f(x)|g(x)g(x)0(f(x),g(x)不同时为0)或f(x)g(x)或f(x)g(x)

7、线性规划

(1)线性目标函数问题

当目标函数是线性关系式如zaxbyc(b0)时,可把目标函数变形为

azczc,则可看作在在y轴上的截距,然后平移直线法是解决此类问题yxbbb的常用方法,通过比较目标函数与线性约束条件直线的斜率来寻找最优解.一般步骤如下:

1.做出可行域;2.平移目标函数的直线系,根据斜率和截距,求出最优解.(2)非线性目标函数问题的解法

当目标函数时非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合,来求其最优解。近年来,在高考中出现了求目标函数是非线性函数的范围问题.这些问题主要考察的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.常见的有以下几种:

比值问题:当目标函数形如zya时,可把z看作是动点P(x,y)与定点Q(b,a)连线xb

22的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。距离问题:当目标函数形如z(xa)(yb)时,可把z看作是动点P(x,y)与定点

Q(a,b)距离的平方,这样目标函数的最值就转化为PQ距离平方的最值。

x+y02截距问题:例 不等式组xy0表示的平面区域面积为81,则xy的最小值为_____

xa

x4y30,OPOA的向量问题:例已知点P的坐标(x,y)满足:3x5y25,及A(2,0),则OAx10.

最大值是.

必修五3.1.1基本不等式教学设计

《基本不等式(第一课时)》教学设计汪清刚吉林省辽源市东辽县第一高级中学一、教学目标 知识与技能:1.理解两个正数的算术平均数不小于他们之积的2倍的不等式的证明。 2.理解两个......

高中二年级数学必修五第三章《不等式》知识点

刀豆文库小编为你整合推荐3篇高中二年级数学必修五第三章《不等式》知识点,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

高中二年级数学必修五第三章《不等式》知识点

高中二年级数学必修五第三章《不等式》知识点高中二年级数学必修五第三章《不等式》知识点1.不等式的定义:a-bb, a-b=0a=b, a-b0a① 其实质是运用实数运算来定义两个实数的大......

高一数学 必修五 不等式

一、知识要点不等式(一)1、不等式的性质(注意不等式成立的条件)(1)对称性:ab(2)传递性:ab,bc(3)可加性:ab(4)移项法则:abc(5)同向不等式相加:ab,cd(6)异向不等式相减:ab,cdacbd(7)乘法法则:ab,c0acbc,a......

必修五不等式知识汇总

必修五不等式知识汇总1.实数的三歧性:任意两个实数a、b,a>b,a=b,a0⇔a>ba-b=0⇔a=ba-b.2.不等式的性质: 性质1(对称性) a>b⇔bb,b>c⇒a>c; 性质3(可加性) a>b⇒a+c>b+c.移项法则:不等式中的任......

下载必修五基本不等式 知识点word格式文档
下载必修五基本不等式 知识点.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文