数学分析考研真题答案_数学分析考研真题解析

其他范文 时间:2020-02-27 12:30:54 收藏本文下载本文
【www.daodoc.com - 其他范文】

数学分析考研真题答案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数学分析考研真题解析”。

2010年硕士研究生入学考试试题答案及评分标准

一、(12分)按数列极限定义证明:lim

证明:2n2n31n22n0.nn31考试科目代码:636考试科目名称:数学分析————4分任给0,要22n,只要,即只要nn2n31————10分

取N2n2nnNlim0.————12分 ,则当时, ,所以, 33nn1n

1二、(14分)若f(x)在点x0连续,证明f2(x)也在点x0连续.证明:设f(x)在点x0连续,则01,0,xx0, f(x)f(0x),————4分 f(x)f0x————20(x)1fx()8分 ,同时f(x)f(0x)

于是f2(x)f2(x0)12f(x0).————12分 所以f2(x)在点x0连续.————14分

三、(14分)证明f(x)axb(a0)在(,)上一致连续.证明:x,x,,f(x)f(x)axx,————4分

0,取a,当xx时,就有f(x)f(x),————12分所以f(x)axb(a0)在(,)上一致连续.————14分

四、(16分)设f(x)在[0,1]上可导且导函数连续.证明:

limnxnf(x)dxf(1).n0

1第1页(共5页)

证明:由于f(x)在[0,1]上连续,因此存在Mmaxf(x)————2分

0x1

xn111n1n

f(x)xf(x)dx 0xf(x)dx0n1n10

111n1

f(x)xf(x)dx,————8分0n1n1

又因

11M

0,————12分xn1f(x)dxMxn1dx

00n

2所以

11nn

f(1)xn1f(x)dxf(1)————16分limnxf(x)dxlim

00nnn1

五、(16分)证明级数

sinnx

在区间(0,)内条件收敛.nn

1

sinnxsin2nx1cos2nx1cos2nx

证明:,————4分 

nn2n2n2n

n1

由于数列单调趋于零,且部分和数列cos2kx有界,2nk1

由Dirichlet判别法知,

cos2nx

收敛,————10分 2nn1

sinnx1

又发散,所以级数在区间(0,)内发散————13分

nn1n12n

原级数收敛性显然,因此原级数在区间(0,)内条件收敛.————16分

六、(14分)证明函数序列sn(x)(1x)xn在[0,1]上一致收敛.证明:sn(x)在[0,1]上收敛于s(x)0,由

sn(x)s()1xn, x————5分

nn

1及(1xx)xxnn1, 

n

易知sn(x)s(x)在x取到最大值,从而————10分

n1

nn11

dsn,s1n1n0n0.n1n1

所以, 函数序列sn(x)(1x)xn在[0,1]上一致收敛.————14分

nn

uxy

七、(16分)通过自变量变换11,变换方程

vxy

22z22z2zx(xy)y0.x2xyy2

解:

zz1zzz1z

2,,————3分 xuxvyuy2v

2z2z22z12z2z

,————6分 x2u2x2uvx4v2x3v

2z2z22z12z2z

22423,————9分 2

yuyuvyvyv2z2z112z12z,————12分 

xyu2x2y2uvx2y2v2

代入原方程,得

x

注意到v

y

x2y2

11z2z

20,uvxyv

u11xyu

,即xy,于是就有

vxyxyxy

x

y

x2y2

xyxy

xy

112

xy4xy

xy

u

v2u24uvuv4.v

从而得变换后的方程

2z2z

.————16分 

uvu4uvv

x2y2z22az,若从z轴的正向

八、(16分)计算ydxzdyxdz,其中L为曲线

L

xza(a0)

看去,L的方向为逆时针方向.解:设是L所围的平面xzaa0的部分,方向由右手法则确定(即取上侧).上任一点的单位法向量

cos,cos,cos,————6分

由Stokes公式,

L

ydxzdy

cos

xdz

x

ycosyzcos

dS————13分

zx

dSa2.————16分

九、(16分)设D是两条直线yx,y4x和两条双曲线xy1,xy4所围成的区域,F(u)是具有连续导数的一元函数,记f(u)F(u).证明

4F(xy)

dyln2f(u)du,D1y

其中D的方向为逆时针方向.证明:由Green公式,得

F(xy)

dyfxydxdy————4分

DDy

y,则此变换将区域D变为 x

作变换uxy,v,vDuvu————9分 1u4,1v

4变换的Jacobi行列式为J

x,y

1,于是————11分

u,v2v

fuF(xy)

dyfxydxdyDyDD2vdudv

uv

fudu

ln2fudu

12v

所以

4F(xy)

dyln2f(u)du.————16分

D1y

十、(16分)证明含参变量积分I

0

etcos2xtdt满足方程

dI

2xI0.dx

证明:记 fx,tetcos2xt,则 fxx,t2tetsin2xt.这时有————2分

fxx,t2tetsin2xt2tet,x,0t,而反常积分I

0

tetdt收敛,由Weierstra判别法,

0

fxx,tdx2

0

tetsin2xtdt

关于x在,上一致收敛.应用积分号下求导定理,得到————8分

dI

2tetsin2xtdtetsin2xt

0dx



2x

0

etcos2xtdt

2xI.————14分

所以

dI

2xI0.————16分dx

湖南大学考研数学分析真题

2011年数学分析真题limxn存在,且为1.xn0,1,x0p,xn1psinxn,n0,1,2...,证明:n方程xsinxp的唯一根。2.fx在0,1上连续,f10,证明:1xn在0,1上不一致收敛;2fxxn 在0,1上一致收敛。123. 已......

华东师大数学分析考研真题

华东师范大学2006年攻读硕士学位研究生入学试题考试科目:数学分析一(30)判别题(正确证明,错误举反例或说理由)1.设数列{an}满足条件:0,N,使nN,|anaN|,,则{an}收敛。2.设f(x)在(a,b)......

深圳大学数学分析考研真题

深圳大学2009年数学分析考研真题n21.一、(10分)用N语言证明极限lim2xn5二、计算题(共80分)1、(6分)limx0 1cosx21ex2.111p1limn2、(6分)计算极限xppp.(n1)(n2)(nn)3、(6分)计算极限x......

上海大学数学分析考研真题

上海大学2013年硕士研究生入学考试数学分析 一:计算题(共7题,75分)1x2xsin1;设函数f(x)2x0x0x0,求f(x)并讨论一下f(0)的存在性。(7分)2.计算:In(7分) n3.计算:(复旦版106页原题)(7分) (n1)!......

四川大学数学分析考研真题(材料)

四川大学2005年攻读硕士学位研究生入学考试题一、(本题满分15分)设求极限limsinnk1nkn21nxne成立.求:limxn二、(本题满分15分)已知数列{xn}满足:对一切n都有:(1)nn(xy)edxdy三、(本......

下载数学分析考研真题答案word格式文档
下载数学分析考研真题答案.doc
将本文档下载到自己电脑,方便修改和收藏。
点此处下载文档

文档为doc格式

热门文章
点击下载本文