线面垂直性质习题及答案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“线面垂直的性质习题”。
直线与平面垂直的性质练习
一.选择题
C是⊙O上的任一点,求证:PC⊥BC.
1.直线平面,直线m内。则有()
Al和m异面Bl和m相交Cl∥mDl不平行m 2 直线a∥ 平面,直线ba, 则b与的关系是()A.b∥B、b 与相交C、b D、不能确定
3.直线b直线a,直线b平面,则直线a与平面的关系是()A.a∥BaD a 或a∥Da
A
4.已知PH⊥Rt△HEF所在的平面,且HE⊥EF,连结PE、PF,则图中直角三角形的个数是()F
A1B 2H
C3D
45.在下列四个正方形中,能得到AB⊥CD的是()
(A)
(B)(C)(D)
6.已知直线a、b和平面M、N,且aM,那么()(A)b∥Mb⊥a(B)b⊥ab∥M(C)N⊥Ma∥N(D)aNMN
二.填空题。
7.在RtABC中,D是斜边AB的中点,AC=6cm,BC=8cm,EC平面ABC,EC=12cm,则
EA=cm ;EB=cm ; ED=cm。
8.已知正△ABC的边长为2cm,PA⊥平面ABC,A 为垂足,且PA=2cm,那么P到BC的距离为。
9.设棱长为1的正方体ABCD-A/B/C/D/中,M、N分别为AA/和BB/的中点,则直线CM和D/N所成的角的余弦值为 10.在菱形ABCD中,已知∠BAD=600,AB=10cm,PA⊥菱形ABCD所在平面,且PA=5cm,则P到BD的距离为,P到DC的距离为。11.如图3,已知PA⊥平面ABC,AB是⊙O的直径,12.设A在平面BCD内的射影是直角三角形BCD的斜边BD的中点O,ACBC1,CD
求(1)AC与平面BCD所成角的大小;(2)二面角ABCD的大小;(3)异面直线AB和CD的大小.
参考答案
1~6DDCBAAEA=;
EB= ;9.1
10.10cm , 10cm
11.证明:∵PA⊥平面ABC, ∴PA⊥BC
∵AB是⊙O的直径 ∴AC⊥BC
∴BC⊥平面ACP ∴PC⊥BC 12.解:(1)∵AO面BCD,∴AOCO,∴ACO为AC与面BCD所成角.
∵BC1,CD
∴BD,∴CO
12BD
∴cosACO,∴ACO6,即AC与平面BCD所成角的大小为
.(2)取BC中点E,连接OE,AE,∴OE//CD.∵CDBC,A
F
B
OD
E
C。
ED= 13 cm
∴OEBC.又∵AO面BCD,∴AEBC,∴AEO为二面角ABCD的平面角.
11又∵OECDAO,∵AOOE,22
∴tanAEOAOAEOarctan
OE22
. 2即二面角ABC
D的大小为arctan
(3)取AC的中点E,连接EF,OF,则EF//AB,OE//CD,∴OE与EF所成的锐角或直角即为异面直线AB和CD所成角. 易求得OEF45,即异面直线AB和CD所成角为45.
线线垂直、线面垂直、面面垂直部分习及答案1.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.(1)求证:BC⊥AD;2如图,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC. (1)求证:AB⊥B......
性质1:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。性质2:如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内。......
线面、面面垂直性质练习试题一、选择题1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是()A.相等B.互补C.相等或互补D.无法确定2下列命题正确的是……......
《线面垂直的性质》教案桃江一中,徐令芝 教学目标:1.探究线面垂直的性质定理,培养学生的空间想象能力2.对性质定理进行变式探究,培养学生发现问题,提出问题的能力3.掌握线面垂直......
线面垂直的证明中的找线技巧 通过计算,运用勾股定理寻求线线垂直M为CC1 的中点,AC交BD于点O,求证:AO1如图1,在正方体ABCDA平面MBD. 1BC11D1中,1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA......